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SUMMARY

This final report on NASA Grant No. NGR-14,005-103 consists of

three parts. Part I is a summary of the overall work; Part II con-

sists of the major reports; Part III is a list of publications re-

sulting from this work.
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INTRODUCTION

This study was initiated to explore various new aspects of thermo-

regulation in a protective garment, such asan extravehicular space suit.

There were three main thrusts in the work with numerous minor investi-

gationsof the details. Two of the main efforts were concerned with hard-

ware concepts while the third effort was an analysis and modeling of the

human-thermal system. In the following sections each of these three

parts will be described after which a brief description of some of the

results of the minor investigations will be given,
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REGIONALLY INDEPENDENT COOLING IN PROTECTIVE SUITS

In thermally hostile environments, such as:in outer space, the

human body needs a protective "micro-climate" in order to function

properly. During the past decades the concept of water cooled gar-

ments has evolved into the practical designs of.the Apollo extra-

vehicular activity (EVA) space suits. In these units the excess heat

of the body is removed by. cooling water circulating through flexible

tubes in direct.contact with the skin. There is a single water supply

with a single, manually controlled inlet temperature. Although these

space suits performed well, they proved inadequate.at the highest

metabolic rates developed during explorations of the moon surface.

Preliminary studies with uniform cooling of the human body [l]*

indicated that one of the limits of such a system was the comfort sen-

sation of the individual at the most sensitive part of the body. With

some individuals, the lowest uniform coolant temperature tolerated

proved to be inadequate to reduce the sweat rate to near the required

minimum level. Thus, it became apparent that one way to improve the

cooling capacity of a water cooled garment.was to provide different

coolant temperatures to different parts .of the body depending on local

need and tolerance levels. To this end a cooling garment with a cool-

ing hood was constructed. The garment consisted of 16 individual pads

made of Tygon tubes. These.pads were.grouped to provide an independent

supply of cooling water to six separate regions of the body: head,

upper torso, lowertorso, arms, thighs, and lower legs. Experiments

with the cooling garment were directed at exploring the characteristics

of independent control of temperature and removal of excess heat from

*Numbers in brackets refer to entries in REFERENCES.
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separate regions of.the body. Five activity schedules consisting of

alternate sessions of standing and treadmill walking were used with

five test subjects. Quasi-steady state and, to some extent, transient

characteristics of the proposed scheme of independent regional cooling

were studied.

The ,following results and conclusions were reached in this phase

of the study [21:

(1) There are regions in the body that require more cooling dur-

ing walking than others, e.g., thighs, head, and lower legs.

(2) During standing, an almost uniform water inlet temperature

was requested for all regions of the body by the test subjects.

This situation changed significantly during exercise.. Con-

clusions 1 and 2 indicate that independent regional cooling

may be more efficient than the present scheme of uniform

cooling.

(3) Cooling of the head during exercise has a profound effect on

comfort.

(4) Transient times for reaching a thermal steady state from the

onset of exercise are of the order of two hours. This

transient time, however, includes a relatively slow active

response of the human thermoregulatory system to changes in

exercise rates, e.g., the shifting of the deep.body tempera-

ture.

(5) During exercise the thermal effectiveness of the cooling

suit.decreased as compared to the values obtained for

standing.

(6) Intermediate changes in the level of activity between an

initial and a final level do not have a noticeable effect,
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on the thermal state so long as sufficient time is allowed,

for reaching asteady state corresponding to the final level

of activity.

(7) Although the cooling suit increased the heat stress of the

subjects, the heat strain seemed to be somewhat diminished-as

indicated by lower heart rates.

(8) The regional order of preferred changes in water inlet tem-

peratures from the onset of a change in the level of activity

could not be determined. More experiments are required to

identify the regions of the body that require faster cooling

(or warming) than others.

Based on the comparative experiments with and without the cooling

suit, the following observations were made:

(1) Metabolic rates were, in most cases, higher during the experi-

ments with the cooling suit indicating that a certain energy.

cost was associated with wearing the suit, i.e., the subject

was under higher heat stress.

(2) Ear canal temperatures were usually lower during the experi-

ments.without the cooling suit.

(3) Heart rates seem tohave been lower during the experiments

with the cooling suit.

(4) Weight losses were usually lower during the experiments

with the cooling suit.

Thus, the cooling suit seems to have reduced the, heat strain even

though the heat stress was increased slightly.

Recommendations for future work were the following:

(1) Application of optimization techniques to obtain design

9<
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guidelines for the construction of more efficient cooling

suits,

(2) Extensions of the model to include the local and temperature

dependent variations of the physiological properties (this

phase, however, should be delayed until more detailed physio-

logical data become available),

(3) Experimentation with various combinations of individual

cooling pads, e.g., hood and thigh pad, to determine the

local effects of cooling at various heat stresses and

activities, and

(4) Experimentation with cooling suits while exercising other

parts of the body, e.g., arms, in order to determine pre-

ferred temperature patterns for the coolant.

In the next phase of the study the interaction between different

types of individual cooling pads and the human body was investigated [3].

Three cooling pads with different.cooling tube sizesand spacings were

constructed and tested.. These pads were equipped with thermocouples to

measure the temperature profiles between adjacent tubes. on the skin sur-

face on.the thigh of a male subject while he wasperforming various

activity schedules on a bicycleergometer. All pads were tested under

identical experimental conditions. The pad with the highest.tube density

removed the greatest amounts of heat with the least temperature vari-

ations on the skin. Also, the transient.times for this pad were the

shortest.

The transient times ,associated with a change from a high metabolic

rate of 1800 Btu/hr (528 w) to a low level of 300 Btu/hr (88 w) were

found to be about 120 minutes. A change from 900 Btu/hr (264 w) to

300 Btu/hr (88 w) resulted in 90 to 100 minute transients. However, the

10<
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transient times.for a change in metabolic rate in the opposite direction

from 300 Btu/hr (88 w) to 1800 Btu/hr (528 w) were 40 to 60 minutes.

When an-intermediate step of 900 Btu/hr (264 w) was introduced between

the last two metabolic rates, the transient times associated with the

individual steps varied from 40 to 80 minutes. However, the overall

transient times for each double-step were approximately the same in

either direction.

Some of the steady state experimental results were used for com-

parison with analytical.predictions for the temperature distribution

on the skin surface using both the cylindrical and rectangular models [21.

Agreement between measured and predicted temperature profiles was

found to be fairlygood. Improved techniques for measuring skin and,

possibly, internal temperatures and physiological quantities, e.g.,

blood perfusion and metabolic heat generation rates, are required to

render the comparison more reliable.

The results indicate clearly that both tube size and spacing have

a noticeable effect on overall cooling efficiency. In order to opti-

mize the relationship between these two parameters, the magnitude of

the maximum expected metabolic rate should be established. Once ob-

tained, a cooling pad can be designed that will remove heat from the.

body.at-any predetermined rate.

11<
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THE APPLICATION OF HEAT PIPES IN PROTECTIVE SUITS

The final stage of.heat.rejection in the current Apolla EVA space

suits occurs across sublimator plates in the back pack. Here, ice is

sublimated into the ever present.vacuum of:outer space. Thus, the

length of a mission is limited .by the amount of water and ice thatcan

be accommodated in the back pack. Any methodthat would provide ad-

ditional cooling would increase either the length of the mission or

the payload. The development of anew.type of hard suit at NASA Ames.

Research Center [41 inspired the idea of incorporating the heat pipe

concept into the available free surfaces of the suit. The idea was to

utilize as much of the surface as possible to radiate heat to outer

space.. Since the astronauts moved about a great deal, it was impera-

tive that the heat be transferred rapidly from one side to another as

different parts of the suit became exposed to outer space. The heat

pipe isessentially multi-directional; i.e.., the direction ofheat.

flow depends only on where heat is supplied and rejecteda Thus, the

application of the heat pipe concept to the hard suit was deemed feasi-

ble and was examined.

First a simple system was developed for determining the fluid trans-

fer capabilities of various wick configurations without.the need for a

complete heat pipe or for any heat transfer [51. Then a versatile heat

pipe with variable dimensions was designed for the study of steady state

and transient heat pipe performance using different fluids and wicking

materials.

An open-ended dewar was designed and constructed for housing the.

heat pipe system. The maximum length of wicking materials was 82 cm;

this distance, was considered the maximum length of heat transfer required

12<
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in future space suits. Distilled water was.the transfer medium used in

the wicking chamber.

The heat input to the dewar was supplied by electric heaters.. Cir-

culation of cool water was used to remove heat from the condenser end

of the dewar. Approximately 45 thermocouples were used for measur-

ing temperatures in the system.

The maximum heat transfer capability or wick "burn out" point was

10 watts with a wick length.of 81.9 cm and operating temperatures of

26.70C (800 F) +50 C. For the Refrasil #C100-28 used, the 10 watt "burn

out" point corresponds to 0.594 watts per cm width of the wick.

The required transport rate per cm. area at "burn out" (10 watts)

was.0.361 cm3/min-cm 2 . This value was well within the 0.299 to 0.424

cm3/min-cm2 range predicted by horizontal wicking tests performed on the

Refrasil #C100-28 using the simple system mentioned above.

Throughout the entire wicking chamber, a maximum temperature vari-

ation of +0.50C was encountered during normal beat pipe operation. No

transient.temperature lag from one endof the wicking chamber to the

other end was observed during heat input changes. Apparently the time

constants of the heat input changes were much larger than the tempera-

ture equalizing time constant of the wicking chamber.

Further studies extended the capabilities of the simple wicking

test [51 to allow the use of relatively volatile fluids [61. The influence

of a liquidfilled gap between a wick and another surface was also investi-

gated. It was found that such a gap increases the liquid transfer several

fold. Consequently, it can be recommended that a wick should always be de-

signed.with an adjacent gap provided by either another. layer of wicking

or a suitable wall. The gap should be as narrow as possible since refill-

ing a wide gap inside a sealed heat pipe could be practically impossible.

13<
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For the same reason, during the. initial filling of the heat pipe, steps

should be taken to insure complete filling of all such gaps with the

working fluid. The results of Shaffer [7] indicate that gaps of any

appreciable size tend to lose their liquid fill, i.e., if the wick is

not touching the. wall or the next layer forming the gap, particularly in

an adverse.gravity gradient.

In a wick limited heat pipe, the addition of water to alcoholdoes

not improve the performance but tends to affect it adversely. A tem-

perature difference, however, can be established across the heat.pipe

by the use of such mixtures. The property parameter, ph /*, seems

to give good qualitative predictions for the performance of mixtures in

a wick limited heat pipe. If the heat pipe is vapor limited, however,

the effect of higher vapor densities occurring with the mixtures could

improve the heat transfer rates.

More specifically, in Part I, wicking material tests were performed

on Refrasil #C100-28. The tests were run on 9-in. by 1-in. Refrasil

strips., Displacement time curves were extrapolated for predicting the

performance of a 21-3/4 in. (51 cm) heat pipe.

In Part II, heat pipe tests were run.with a well defined wick length

of 21-3/4-in,. and a total width of 7 in. (17.8 cm). The same Refrasil was

the wicking material. An open ended dewar housed the heat pipe system

which consisted of heat input, mass transfer, and heat removal sections.

Two electric heaters supplied heat input, while circulating water was

used for heat removal.

The results showed water to be a.much better operating fluid than,

ethyl alcohol or 50 percent ethyl:alcohol by weight. Ethyl alcohol.

*p = density, hfg = latent heat of vaporization, a = surface tension, and
P .= viscosity.

14<



appearedto be onlyslightly better than the 50 percent mixture. At an

angle of zero degrees, i.e., horizontally, the maximum heat transfer

capacities were 15, 4, and 2 watts, respectively, for the three fluids.

The predicted wattages from Part I were generally higher due to greater

ease in saturating the wicking material with fluid.

A gap effect created by sewing two layers of wicking material to-

gether.greatly enhanced the heat pipe performance. At an angle of zero

degrees, water transferred over 80 watts, as compared to 15 watts pre-

viously.

While these studies were performed, the hard suit models at NASA

Ames Research Laboratories underwent considerable change including the

addition of bellows at several places. Some of these alterations sub-

stantially reduced the available free surfaces for heat pipes. In ad-

dition, studies conducted elsewhere indicated that the construction of

a practical heat pipe system will be a.very difficult manufacturing

problem. Consequently, no further heat pipe studies were made.

15<z
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MODELING OF THE HUMAN THERMAL SYSTEM

The thermal system of homeotherms, particularly that of the human

body, has long been of interest to many researchers. With the progress

of scientific knowledge and methods, emphasis has shifted from mere ob-

servations of this.system and its functions to more systematic ,studies

including more and more analytical and numerical modeling techniques.

These studies provide improved understanding of the;mechanisms of thermo-

regulation as well as means for predicting the thermal performance of

humans in various environments, e.g., space suits. Thus, parallel to ex-

perimental studies on space suits and cooling pads, analytical models of

the human body were developed which included explicitly the effects.of

blood flow, local heat generation, conduction, and storage of.heat as

well as non-uniform cooling of the skin surface.

A second-order, partial differential equation, the "bio-heat"

equation, was obtained for the model. The tissue was assumed to be iso-

tropic and homogeneous and all properties were assumed to be constant.

Transient, as well as steady-state, closed form, analytical solutions'

were obtained for cylindrical and rectangular geometries and for various

parameters [2,3.

Based on the analysis, the following observations were made:

(1) Because blood flow plays such a significant role in the transfer

of heat inside the living tissue, models which do not include a

separate blood flow term.will generally be inadequate to describe

properly the thermal effects.in living systems.

(2) Transient times for reaching a so-called "fully developed" tem-

perature profile in the tissue were estimated to be ofthe order

of 5-20 minutes with the shorter times associated with higher

:I6<
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final metabolic rates. These transient times were also found

to be strongly dominated by a geometrical parameter.

(3) At elevated metabolic rates, maximum temperature may occur in

the muscle tissue rather than in the inner core.

(4) Knowledge of the exact shape of.the heat flux on the skin was

found to be unimportant for the determination of the tempera-

ture distribution away from the skin surface.

(5) Results obtained for the cylindrical and rectangular models

were remarkably close for the practical range of variables.

The rectangular geometry, however, was easier for computation.

The analysis was partially validated by measuring the temperature

profiles on the skin of the thigh cooled by parallel tubes in contact

with the skin as described in a previous section.

The transient models [2,8] can form a basis for systems modeling

of the human body in combination with an environment. For example, the

thermal control system of a space suit can be studied with one of the

appropriate transient models of the human body serving, as. part of the

overall model of the entire suit-body system.

On a supplementary grant, the steady-state analysis was applied to

the problem of local, transcutaneous cooling of a blood vessel [9].

This study was undertaken as a result of experiments on localized cool-

ing of the -neck skin above the carotid artery which indicated a signifi-

cant effect of this cooling on the thermal comfort sensation of the in-

dividual [101.

The results indicated that the optimum width of a cooling strip was

approximately three times.the depth to the centerline of the artery. The

heat extracted from a typical carotid artery with such a strip was about

0.9 w/m-oC which was too small to affect significantly the temperature of

the blood flow through a main blood vessel such as the carotid artery.

17<
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SUMMARY OF AUXILIARY STUDIES

There were a number of auxiliary studies performed, not all of which

were directly supported by this grant. The most significant studies were,

as follows:

(1) An experimental study was performed to determine the degree of

essentially uniform, overall cooling necessary to suppress

sweating. The results indicated that under some circumstances.

and, in particular, with certain individuals, completesuppres-

sion of sweating is not feasible by uniform skin cooling

alone [1].

(2) A.probe for the measurement of thermophysical properties of

biologicaltissues "in vitro" and "in vivo" has been developed

and used, e.g., [11].

(3) A ventilated capsule system for quantitative measurement of

sweat output from a local area was.constructed. This technique

was applied in a study to determine the influence of ingestions

of water on sweating [1]. A drinking reflex which causes quick,

transient increase of sweat rate was observed when.the subjects

drank either cold or body temperature water. The amount of

liquid ingested had a very.definite effect on sweat rate. A

small amount (250 ml) fed through a stomach tube caused little

or no increase in sweating; a larger amount introduced the same

way caused a transitory increase in sweating. As longer lasting

responses, hot water caused an increase in sweating, while cold

water caused a decrease. These responses were attributed to the

thermal effect of the ingested water on the alimentary tract.

(4) The analytical work showed the frequent.recurrence of a linear

combination of modified Bessel functions for the cylindrical

8<
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models of the human thermalsystem. The behavior of these.

functions were examined and their values were tabulated for

easy reference [12].

(5) Preliminary analyses were performed to determine the feasibility

of an "all-sweat" cooling scheme. The results indicated that the

human body could be cooled by evaporation of water from the sur-

face of the skin alone, provided that the moisture could be re-

moved locally by the suit. One method may be the incorporation

of porous sublimator plates into the space suit itself. The

method.could reduce the complexity of the system by eliminating

the currently used water system and by utilizing the control

system of the body [131.
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ABSTRACT

A heat pipe with variable dimensions was designed for the study of

steady state and transient heat pipe performance using different fluids

and wicking materials.

An open ended dewar was designed and constructed for housing the

heat pipe system. The maximum length of wicking material was 82 cm;

this distance was considered the maximum length of heat transfer re-

quired in future space suits. Distilled water was the transfer medium

used in the wicking chamber.

The heat input to the dewar was supplied by electric heaters. Cir-

culation of cool water was used to remove heat from the condenser end

of the dewar. Approximately 45 thermocouple points were used for meas-

uring important temperatures in the system.

The maximum heat transfer capability or wick "burn out" point,

was 10 watts with a wick length of 81.9 cm and operating temperatures

of 26.7 0 C (80 0 F) ±50 C. For the Refrasil #C100-28 used, the 10 watt

"burn out" point corresponds to 0.594 watts per cm width of the wick.

The required transport rate per cm2 area at "burn out" (10 watts)

was 0.361 cm3/min-cm2 . This value was well within the 0.299 to 0.424

cm 3/min-cm 2 range predicted by horizontal wicking tests performed by

the author on the Refrasil #CI00-28.

Throughout the entire wicking chamber, a maximum temperature vari-

ation of !±%C. was encountered during normal heat pipe operation. No

transient temperature lag from one end of the wicking chamber to the

other end was observed during heat input changes. Apparently the time

constants of the heat input changes were much larger than the tempera-

ture equalizing time constant of the wicking chamber.
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1. INTRODUCTION

During future space exploration, astronauts will remain in outer

space for extended periods of time. Extravehicular tasks will be per-

formed by the astronauts and their only protection from the surrounding

space will be a space suit.

A thermoregulatory system will, by necessity, ibe incorporated in the

space suit. Its purpose will be to control the temperature of the at-

mosphere immediately surrounding the astronaut (the space between the

astronaut's body and the inner layer of the space suit) and, in general,

to provide a satisfactory thermal environment for him.

At present, liquid cooled undergarments are used for the tempera-

ture regulation. An intricate system of valves, pumps, and auxiliary

equipment is required. Need for a more efficient, less complicated,

and self-contained thermoregulatory system seems apparent.

A new system must be capable of rejecting heat from the space suit

and of transferring heat from one part of. the suit to another part.

The heat rejection could be either by radiation to outer space or by

heat exchange with a porous plate sublimator.

A heat pipe system for transferring heat has many advantages over

the water-cooled undergarment. First, the heat pipe is a completely

closed system and needs no recharging after initial assembly. Heat

conducting capabilities of 100 to 1000 times that of the best conducting

metals can be obtained using heat pipes. There exists no need for pumps,

compressors, or auxiliary equipment during the operation of the heat

pipe. If a temperature difference exists between the ends of the heat

pipe, heat will be transferred down (evaporator to condenser) the pipe.
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Regardless of the heat pipe orientation, relative to the gravitational

field, the pipe will transfer heat in either direction as long as a

wicking assembly is present to return the liquid to the heated end.

The heat pipe is particularly suitable for "hard" suits now under con-

sideration for future space exploration.

beOPV n



2. HEAT PIPE OPERATION

There are three distinct portions or sections to a heat pipe;

1. a heat input (evaporator) section,

2. a mass (vapor state) transfer and a mass (liquid state)
return section, and

3. a heat rejection (condenser) section.

The heat input evaporates the liquid to the transfer section.

As a result of a very small pressure gradient, the vapor is forced down

the pipe to the heat rejection section where the vapor is condensed.

Either by capillary action or gravitational feed, the liquid is then

carried back to the heat input section for recycling.

When capillary action is required for returning the liquid to the

heat input section, some type of wicking material must be used. The

wicking materials normally used are: fine wire screens, porous solid

materials, and natural or synthetic cloths.



3. GENERAL THEORY

The heat pipe considered in this paper is shown in Fig. 1. The

double open-ended dewar is assumed to be 4 perfect insulator in the

radial direction. All heat added at the heat input section is trans-

ferred axially down the dewar. The major design consideration for the

setup was to provide means for the evaluation of wick performance with

a well defined transfer length within the heat pipe.

A temperature gradient of less than 4°C existed over the entire

length of the mass transfer section. This nearly constant temperature

existed because of the very small pressure gradient down the length of

the transfer section.

The power transfer capability of a heat pipe depends on the fol-

lowing basic parameters:

i. the capillary pumping head APc5

ii. the vapor pressure drop AP ,

iii. the liquid viscous drag APL, and

iv. the gravity head AP [11*.

There also is a pressure drop term caused by a momentum change in the

flow of the returning liquid. This term, however, is negligible when

compared to the other four terms [2]. From a pressure balance stand-

point only, the equation for heat pipe operation is

AP > AP + APL + A (1)c- v L g

*Numbers in brackets designate references.

3z<



Note" * Represents Typical Thermocouple Locations
o Represents O-Ring Locations

Guard Heater
Main Heater

Aluminum Disk
Refrasil Wicking Layers Heat Input
Heat Output

Aluminum Disk

A

.o Wicking4- Length L

-ca Vacuum Insulated Glass Dewar

Circulating Water or Freon

Figure 1. General Heat Pipe Design L,



6

In other words, the available pumping head must be sufficient to over-

come the pressure losses caused by vapor transport, and by the viscous

drag of the returning liquid. Gravity can aid or hinder, depending on

the orientation of the evaporator with respect to the condenser. The

following theory is patterned, in part, after Feldman's [3] analysis

of heat pipe operation.

3.1 CAPILLARY PUMPING IN WICK

The capillary pumping term, APc, may be written

cos C cos 6
AP =2a e c (2)

\ e c

where a is the surface tension of the liquid, 6 is the liquid contact
e

angle at the evaporator section, e is the liquid contact angle at the

condenser section, r is the effective radius of the wick pore at the
e

evaporator section, and rc is the effective radius of the wick pore at

the condenser section.

The maximum value of Eq. (2) is obtained when 6 = 00, = 900,e c

and re is the actual pore radius of the wicking material. Equation (2)

becomes

AP = 2o 2 (3)
c max r r (3)

where r = r .
e

3.2 VISCOUS LOSSES IN VAPOR

Pressure losses caused by vapor flow in the heat pipe may be
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determined by using existing theory for either laminar or turbulent

flow in pipes [4]. When the vapor flow pressure drop was calculated,

it was found to be negligible when compared to other pressure losses

in this heat pipe.

3.3 VISCOUS LOSSES IN LIQUID

Flow rates and velocities encountered with capillary flow in wicks

may be assumed to be laminar* and relatively free from inertial effects.

Darcy's Law [5] for flow through porous media then can be applied to

yield

S= iLm p (4)
L pKA KA '

where p is the liquid viscosity, L is the wicking material length, m

is the liquid mass flow rate, p is the liquid density, K is the wick

permeability, A is the total cross sectional area of the wick, and v

is the volume flow rate.

3.4 GRAVITATIONAL FIELD EFFECTS

The gravitational field can aid, hinder, or have no effect on the

liquid flow in the wick. This effect depends upon the orientation of

the evaporator and condenser sections relative to the direction of the

gravitational field. The general equation for the pressure loss in the

wick caused by gravity is

*For the heat pipe considered in this report, the Reynolds numbers were
56.3 and 14.5 for the water flow in the Refrasil and the vapor flow in
the wicking chamber, respeccively.

<~~



AP = pgL cos c , (5)

where p is the liquid density, L is the wick length, g is the acceler-

ation of gravity, and 0 is the angle between the heat pipe axis and the

gravitational field as shown in Fig. 1. The algebraic sign in Eq. (5)

is

(+) when the evaporator is above the condenser in the gravitational
field (hinders),

(-) when the condenser is above the evaporator in the gravitational
field (aids),

and when the evaporator and the condenser are in a horizontal plane

gravity has no effect, the term is zero.

The gravitational effects on the vapor flow are neglected in this

report, since the density of the vapor is approximately 4000 times less

than that of the liquid at 260 C.

3.5 MAXIMUM FLOW RATE IN THE WICK

By substituting Eqs. (3), (4), and (5) into Eq. (1), the maximum

flow rate is obtained as

pKA 2- pgL cos . (6)

If the heat pipe is horizontal, Eq. (6) reduces to

* 2pKA •m =-rL vp (7)ljrL

since P = 900.

36<
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For given operating conditions, wicking fluid, and wicking material

a, p, p, K, A, and r are constant and Eq. (7) becomes

L = 2pKA L = C = constant. (8)
Pr

3.6 MAXIMUM HEAT TRANSFER RATE

Because the rate of heat transfer attributed to latent heat trans-

port is large and the temperature gradient along the heat pipe is small,

conduction, radiation, and sensible convection heat transfer will be

negligibly small. Therefore, assuming all thermal energy is trans-

ferred as latent heat, the heat transfer rate is

Q = mhfg = vphfg (9)

where hfg is the latent heat of vaporization at the operating pressure

and temperature of the system.

Combining Eqs. (6) and (9), the maximum heat transfer rate becomes

Q - KA - pgL cos hfg (10)
SIL r fg '

If the heat pipe is horizontal, Eq. (10) reduces to

/ 2cpKA\Q = h fg(ll)\ rL hfg

since = 90'.

%.0
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The following assumptions were made in obtaining Eqs. (10) and

(11):

1. Gravity effects on vapor flow are negligible.

2. Liquid flow in wick capillaries is laminar.

3. Viscous vapor flow losses are negligible.

4. Conduction, radiation, and sensible convection heat trans-
fer along the heat pipe are negligible.

5. Liquid properties are constant along the heat pipe.

6. Flow and heat transfer are essentially one-dimensional.

7. Wick is uniform and evenly saturated.

8. Heat transfer is uniform over the evaporator and condenser
surfaces.



4. EXPERIMENTAL WORK

4.1 HEAT PIPE DESIGN*

Dewar

A 7.62 cm inside diameter, 8.90 cm outside diameter, and 101.5 cm

long double open-ended, silvered glass dewar was used to contain the

entire test setup, The inside and outside diameters were attained by

using concentric glass cylinders with a high vacuum between them and

sealed on the ends. This vacuum, between the silvered surfaces, pro-

vided the necessary insulation between the heat transfer area and the

surrounding atmospherel1. The three main elements of the heat pipe

previously mentioned were then fitted inside this dewar with a com-

bination of o-rings and gaskets sealing axially down the dewar. A

radial connection between the inside of the dewar and the exterior was

provided. This connection was needed to allow charging the wicking

chamber with the desired transfer medium or fluid and to provide access

to the wicking chamber for thermocouple wires.

Heat Input Section (Evaporator)

The main requirement here was to have a heat input which could be

measured accurately. The final system chosen was to use two electrical

heaters. The main heater, closer to the heat transfer area, was used

for the total heat input and the distant guard heater was used to

*Initial design of the heat pipe was by Prof. John C. Chato of the
University of Illinois, Urbana, Illinois.

iUnsilvered window strips allowed inspection of the interior after
assembly.



12

minimize heat flux in the outward axial direction. By measuring the

input wattage to the main heater, an accurate measurement of heat in-

put to the system could be obtained. Both heaters were supplied elec-

trical energy from variable transformers and the wattage inputs were

measured by wattmeters (see Fig. 2).

Heat Transfer Section (Wicking Chamber)

The wicking material used was Refrasil #CI00-28. This material

had a water lift rate and horizontal transfer rate* which were deemed

the best from past experience.

Rather than arranging the wicking material in a cylindrical

fashion, concentric with the dewar as is normally done, it was decided

to assemble the wicking material in four horizontal layers. The two

center strips were 5.0 cm wide while the top and bottom strips were ap-

proximately 3.8 cm wide. This arrangement eliminated any gravitational

effects on a given cross section while the dewar was maintained in a

horizontal attitude. Also a wicking cage was utilized for suspending

the Refrasil (see Fig. 3). This cage consisted of four teflon disks,

two stainless steel rods, and three intermediate supports. The three

intermediate supports were required because the wicking cage was the

primary device separating the two aluminum disks. Since a vacuum of

approximately 10- 3 mm of Hg. was pulled in the chamber between the disks,

the wicking cage was required to support a load of approximately 100

pounds in compression. Finally, circular sections of Refrasil were at-

tached to the insides of the aluminum disks for the purpose of

*See p. 27 for a plot of Transfer Distance vs. Time for the Refrasil
#C100-28 and other Refrasils commonly used.

40<
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Figure 2. Heat Pipe System
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Note: * Indicates Location of Thermocouple Points

Refrasil Distribution Layer
Teflon Retainer Disks
Adjusting Nuts
Threaded Locating Rods
Attaching Strip for Wicking
Material Ends
Refrasil Wicking Layers

*_ _ Wicking Length L

Figure 3. Wicking Cage Assembly

42<
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equalizing the distribution of fluid on each disk. These sections of

Refrasil were lightly spot-epoxied to the aluminum disks.

Heat Removal Section (Condenser)

The heat transferred down the dewar by the wicking chamber was

dissipated through the condenser aluminum disk. After the heat was

conducted through the condenser aluminum disk, it was removed by cir-

culating cool water through the condenser chamber and expending the

water. An alternate method, which will be used in the future, uses a

Freon in a liquid-vapor state circulating in a closed system. The

closed system consists of the condenser end of the dewar and a storage

tank (see Fig. 4). Copper cooling coils are located inside the storage

tank and will be used to remove the heat from the Freon so that the

pressure of the Freon in the tank remains within a reasonable range

and that the temperature can be controlled to remove all the heat trans-

ferred. Water or any other cooling agent can be circulated through the

cooling coils since the coils are isolated completely from the Freon

inside the tank.

Temperature Measurement

Temperatures throughout the system were measured by copper-con-

stantan thermocouple wires. Approximately forty-five different points

in the system were monitored. Thermocouples were placed across mica

disks between the two heaters for measuring the gradient existing there.

Next, thermocouples were placed across the heater aluminum disk in

order to determine the temperature gradient for heat input calculations.

In the wicking chamber, six thermocouple points were distributed, two

at each end and two distributed down the center of the wick for

43<
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measuring temperatures and for determining when "burn out" (desiccation

of the wick material) occurred. At the condenser end, thermocouples

were used again to determine the temperature gradient for determining

the heat flux out of the system. Accurate determination of the con-

ductivity of the aluminum disks was made before the system was assembled.

The product of conductivity and temperature difference indicated the

heat flux.

Wicking Chamber Manifold

A manifold was constructed for use with the wicking chamber.

First, the manifold had a large vacuum valve (see Fig. 5) which con-

nected to a vacuum system (see Fig. 6) capable of vacuums to 10- 6 mm

of Hg. for evacuating the wicking chamber. A transfer plug was adap-

ted to the manifold for extracting the thermocouple wires from the

wicking chamber. A small needle valve was attached to the manifold for

charging the chamber with the working fluid. A union was also adapted

to the manifold for connecting a combination pressure-vacuum gage for

indicating the pressure in the chamber. Another union was adaptced to

the manifold for making the direct connection to the wicking chamber.

The entire manifold, along with the valves and unions, was mounted to

the dewar mounting stand near the wicking chamber outlet tube (see

Fig. 7). Then, all of the necessary connections to the wicking chamber

were made through the wicking chamber manifold.

Temperature Recording

A twenty-one point Leeds and Northrup millivolt recorder was used

(see Fig. 2). Since all forty-five thermocouple points could not be

recorded, the most representative points were chosen after monitoring

45<
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Figure 5. Wicking Chamber Manifold
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Figure 7. Heat Pipe and Vacuum System



21

all forty-five points for a period of time. A potentiometer was used

to continuously monitor the temperature gradient between the main and

guard heaters so that the guard heater variable transformer could be

adjusted to minimize the heat loss from the main heater.

4.2 INITIAL TESTING PROCEDURE

The wicking chamber was evacuated to an initial absolute pressure

of 8 x 10 - 2 mm of Hg. However, under this first evacuation, the wick-

ing cage collapsed by buckling the stainless steel rod columns. After

sufficient strengthening of the cage, the chamber was evacuated to 15

-2
x 10 - 2 mm of Hg. Six hundred milliliters of distilled water was then

injected into the chamber. This large amount of water proved to be

much more than was necessary.

During the first application of heat to the wicking chamber, no

heat was transferred to the condenser end and a temperature distribution

of 5 to 10 0 C was established. Much purging of the wicking chamber was

required before the temperature in the chamber equalized and a tempera-

ture gradient across the condenser aluminum disk was established.*

After establishing the heat flux, further purging was required at about

fifteen minute intervals. Without this purging, the temperature dis-

tribution in the wicking chamber widened and the wicking material ap-

peared to begin "burn out" at less than 10 watts input power. With the

intermittent purging, the maximum heat transport rate was approximately

10 watts.

*Purging of the wicking chamber was performed by cracking (opening
very slightly) the large vacuum valve while the mechanical vacuum
pump was running. This procedure drew out of the chamber the non-
condensible gases which had formed a barrier between the aluminum disk
and the newly evaporated water vapor. The valve was opened for 1 to
5 second durations.
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During testing, heat inputs were varied from an initial zero watts

to a maximum of 60 watts at 5 watt intervals. Each input wattage was

maintained until all temperature in the system stabilized. After sta-

bilization, the heat input was stepped up or down, depending upon the

test being performed. Even though runs of greater than 10 watts were

obtained, 10 watts was the maximum repeatable heat flux before "burn

out" occurred.

Since the time constant of the heater assembly and, in particular,

the heater aluminum disk temperature were large (approximately seven

minutes for 63.2% response of steady state for the aluminum disk), the

"burn out" wattage was, at first, difficult to determine experimentally.

When a given heat input was maintained for at least 10 to 15 minutes,

10 watts was the maximum maintainable input wattage. At wattage inputs

above 10 watts, the heater aluminum disk temperature continued to in-

crease without reaching a steady state value. This fact would indicate

that the circular section of Refrasil attached to the aluminum disk

began to dry out. Then the aluminum disk temperature could continue

to increase and begin to diverge over the surface of the disk.

4.3 NORMAL TEST RUN

After initial charging of the wicking chamber, the heat pipe con-

tinues to operate until either non-condensible gases collect at the con-

denser surface or both the heater and condenser ends are at the same

temperature. If a temperature difference exists and the heat pipe is

not operating, the wicking chamber must be purged lightly. The heat

pipe should be allowed to operate without adding heat until both

ends arj at the same temperature. Then the main heater should be set

50<
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at 2 or 5 watts, depending upon the size input change utilized. The

temperature difference between the main and guard heaters should be

monitored continuously. Then the guard heater is adjusted so that the

temperature difference is approximately zero. The temperature differ-

ence should be monitored and the guard heater adjusted throughout the

entire test run.

When the heater aluminum disk temperature stabilizes, the main

heater input should be increased by the 2 or 5 watt change required.

The guard heater wattage should also be increased accordingly to mini-

mize the main to guard heater temperature difference. The variance of

the wicking chamber temperatures should be observed continuously. When

the variance exceeds -2C, the chamber should be lightly purged. If the

temperatures do not equalize within 20 seconds after the purge, the

main heater should no longer be increased, for "burn out" is impending.

At the same time, the temperature of the heater aluminum disk on the

wicking chamber side should be observed. If these five temperatures on

the disk continue to rise without reaching a steady state value or start

diverging from each other, "burn out" could be impending. At "burn out"

these temperatures will continue to diverge from each other regardless

of the amount of purging. It is to be noted that the "burn out" can be

a very gradual process.

Step down runs of the system were not performed successfully. The

heat retention and time constants of the heater assembly and aluminum

disk were too large.

After the wick "burn out", the heaters should be turned off. The

wick must be allowed to resaturate before additional tests can be run.

51<
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4.4 WICKING MATERIAL TESTS

The wicking material, Refrasil #C100-28, used in the heat pipe

was performance tested outside the heat pipe. Figure 8 shows the test

apparatus used in these tests. The two objectives of the tests were to

obtain fluid front displacement and volume input as functions of time

data. Then the volume transport rate of the wick for any length was

calculated in two ways. First, the transport rate was found using the

equation

v = AV (12)

where v is the volume transport rate, A is the measured cross section-

al area of the wick, and V is the velocity of the wetting front. The

V term was determined by differentiating the displacement-time equation

determined from Fig. 9. Second, the volume transport rate was deter-

mined by summing the total volume input to the wick over a given

length. When this total volume was divided by the total elapsed time,

the volume flow rate for a wick of one-half the total wick length used

was determined. Equation (8) shows that the mass transport rate is in-

versely proportional to the total wick length. The volume rate for

the length of wick desired can be scaled by multiplying by the appro-

priate ratio. This procedure for scaling the volume transport rates

for different wick lengths was applicable only to the horizontal wick

configurations, as can be seen from Eq. (6).

The wicking test apparatus, Fig. 8, consisted of three main ele-

ments. First, the distilled water was supplied by a 100 ml burette;

all excess water dripping from the saturated end of the wick was

5g<
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collected in a 50 ml receiver burette. The total volume transferred

down the wick at any time was the difference between the readings of

the supply and receiver burettes. Second, the wick was supported on

a 1 cm-square mesh screen; a 3.2 cm inside diameter plexiglass tube

was used to house the entire wick, except for the area where the water

was introduced. This tube minimized losses from the wick by evapora-

tion. Before each test, a saturated wick was placed inside the tube

for several hours in order to saturate the atmosphere there. Third,

pairs of copper wires were attached to the support screen at every

5 cm distance down the length of the wick. The insulation was removed

from the ends of all the wires and the ends were then inserted into

pores in the wick. The wires in each pair were separated by approxi-

mately I cm in a given cross section of the wick and each pair of

wires was separated by a 5 cm distance down the wick. All the wires

were connected to a 25-point thermocouple switch; the main connection

of the switch was connected to an ohmmeter. When the wick was dry, the

ohmmeter indicated an infinite resistance for any pair of wires. Im-

mediately after the pores of the wick occupied by a pair of wires in

any cross section were wetted, the resistance between wires changed

(within approximately 2 sec) from an infinite to approximately IMQ

resistance. When one cross section was wetted, the thermocouple switch

was advanced to the next pair of wires to detect wetting of the wick at

the next 5 cm interval. When the wetting front reached each pair of

wires, all readings were taken. The readings included: supply and re-

ceiver burette volumes, total distance of wetting front down the wick,

and total elapsed time of the test measured using a stop watch. From

the distance and time data, a graph (Fig. 9) was constructed.

4<
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Fluid: Distilled water

Refrasil #C100-28 cloth (new)
0 Horizontal transfer test

A Vertical lift test

Refrosil #C100-28 cloth (used)
El Horizontal transfer test

Refrasil Series B 1/2 sleeving [71
--- Horizontal transfer test

Refrasil Series N sleeving [61
Horizontal transfer 0.635 cm dia.

Z1 Horizontal transfer 0.954 cm dia.

100
E

0
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0.1 1.0 10 100 1000

Time, minutes

Figure 9. Wick Performance Graph



Maximum test wick width and length were 2.5 cm and 95 cm, respectively,

for the test apparatus constructed.
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5. DISCUSSION

For a "burn out" heat flux of 10 watts, which for the Refrasil

#C100-28 used corresponds to 0.594 watts per cm width of wick, the

volume transfer rate of water in the Refrasil wicking material re-

quired was

v - = 0.247 cm3/min , (9)
h p

fg

where Q equals the "burn out" wattage transf:, red and hfg is the en-

thalpy of evaporation of water at 26.7 0 C (800F). With a wick cross

sectional area of 0.685 cm2 , the volume transfer rate per unit area

becomes 0.361 cm 3/min-cm 2 . The wicking chamber temperatures for all

tests were within 50 C of the 26.7'C temperature used for the calcu-

lations.

From the wick performance tests on the Refrasil #C100-28, the

volume flow rates per area were 0.299 to 0.424 cm 3/min-cm 2 . The

lower value was determined from the volume input measurements, where-

as the upper value came from velocity calculations on the test data

(Fig. 8). This wicking material was unused.

Another wick performance test was conducted on the actual wick

used in the heat pipe. The results indicated approximately 45% less

than the volume transport rates per cm2 area for the unused material;

the values were 0.163 to 0.229 cm 3/min-cm2 for volume and velocity

calculated, respectively. This decrease in wicking capability could

be due primarily to wick contamination during the four months while

it was used in the heat pipe. The used wick had acquired a yellow-

brown appearance in contrast to the white color of the unused wick.

57<
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References [6] and [7] give water flow rates through horizontal

wicks for different specimens of Refrasil. When scaled to the 81.9 cm

length used in this heat pipe, the volume transfer rates per cm2 area

from [6] were 1.39 and 2.82 cm 3 /min-cm2 for the 0.954 and 0.635 cm

diameter sleeving, respectively. These values are from 365% to 567%

greater than the wicking tests performed by the author. The results

of [7] lie between the data of [6] and those obtained in this work.

There are three main reasons for large variations in liquid transfer

rates. First, the Refrasil used in this experiment probably had a

different pore size than the samples used by the other authors. As

shown in Eqs. (6) and (7), the pore radius is one of the independent

variables for the mass or volume flow rates. Second, the sleevings were

flattened for the horizontal tests in the previous references. The

interaction of the touching surfaces of the inside diameter may have

caused errors in the transport rate. Third, in [6] the water was re-

moved from the end of the wick by adding heat from a gas burner. This

addition of heat created a large temperature rise and a resulting

possible 20% change in the surface tension of the water. Since sur-

face tension is the main pumping pressure, the temperature rise could

cause error in the transfer rate. Figure 8 shows the comparison among

the wicking materials.

The experimental "burn out" transfer rate per cm2 area (at 10 watts)

of 0.361 cm 3/min-cm 2 lies well within the range predicted by the

author's horizontal wick performance tests. Actually the experimental

value coincides with the average of the predicted rates for the unused

Refrasil #C100-28 and within 36% of the upper predicted value for the

used Refrasil #C100-28.
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The maximum vapor velocity in the wicking chamber at "burn out"

was approximately 446 cm/min. This value was far below the speed of

sound in water vapor, 2.60 x 106 cm/min at 26.70 C. The corresponding

Reynolds number at "burn out" was 14.5, indicating laminar flow.

If the entire cross sectional area of the wick were capable of

transporting liquid, the water velocity in the wick while approaching

"burn out" would be approximately 0.361 cm/min. Actually much of the

area is not capable of transporting liquid due to the presence of the

fibers of the Refrasil. The mean velocity of the liquid in the wick

probably would be approximately 2 to 5 times that value stated above.

A maximum value of 1.805 cm/min seems reasonable. The corresponding

maximum Reynolds number was 56.3 in the wick with water at 26.70 C.

Usable data for the heat flux through the aluminum disks were not

obtained. Thermocouple points had been attached to the aluminum disks

with epoxy for the purpose of obtaining both absolute temperature

readings on the disks and relative temperatures across the disks. This

relative temperature, along with the accurately determined conductivity

of the aluminum disks, was to be used tor calculating the heat flux.

However, a thin layer of epoxy had been applied to the bare thermo-

couple wires before attaching them to the disks in an effort to pre-

vent electrical shorting of the thermocouple wires. The epoxy did in-

deed prevent electrical shorting, but also introduced a large thermal

resistance. This resistance was large enough to cause errors in the

differential temperature of 50 to 1500%. The maximum differential

temperature times the disk conductivity yielded a heat flux of up to

15 times greater than the heat applied through the main heater. This

measurement was obviously in error.
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With the system used, no transient temperature lag from one end

of the wicking chamber to the other end was observed during heat input

changes. Apparently the time constants of the heat input changes were

much larger than the temperature equalizing time constant of the wick-

ing chamber. The time constant for the temperature on the wicking

chamber side of the heater aluminum disk was approximately seven

minutes for a 63.2% response of steady state.
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6. CONCLUSIONS

The heat pipe construction was completed and initial experimental

operating data were obtained. The maximum heat transport rate was 10

watts. For the Refrasil #C100-28 used, the 10 watt "burn out" point

corresponds to 0.594 watts per cm width of the wick. This value was

well within the power level of 8.27 to 11.8 watts predicted from hori-

zontal wicking tests performed on the Refrasil #C100-28. Both vapor

and liquid flows in the wicking chamber were found to be laminar.

Usable temperature drops across the aluminum disks were not ob-

tained; temperature variances within the wicking chamber were found to

be consistently less than oC over the entire 81.9 cm wick length.

With the system used, no transient temperature lag from one end of the

wicking chamber to the other end was observed during heat input changes.

Apparently the time constants of the heat input changes were much lar-

ger than the temperature equalizing time constant of the wicking chamber.

During this initial testing, many problems were encountered. Most

of them were solved during the test runs and the main operating para-

meters of the heat pipe system were determined. Perhaps the most im-

portant fact of the initial testing was the resulting closeness of the

experimental "burn out" to that predicted from horizontal wicking tests

performed by the author.
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7. RECOMMENDATIONS

7.1 HEAT PIPE MODIFICATIONS

1. A new wicking cage should be made. Narrow supports for lo-

cating the wicking material should be provided at a 10 to 12 cm spacing.

If the cage is made solid (nonadjustable), attachment of the wicking

material may be facilitated greatly.

2. Since high temperature build up was encountered around the

heater pack, several of the mica sheets and the copper disk should be

removed from between the main heater and the heater aluminum disk. With

less thermal insulation, a greater heat flux could be realized with less

temperature differential.

3. Special thermocouple wires should be used. These wires should

have measuring points coated with material having high electrical and

low thermal resistances, The special wires could be placed on each

side of the aluminum disks to accurately measure the differential tem-

perature drops. With these temperature measurements, accurate values

for the axial heat flux could be calculated.

4. A small needle valve should be inserted on the manifold be-

tween the vacuum system and the wicking chamber. This valve would pro-

vide fine control for purging non-condensibles from the wicking chamber.

5. During reassembly of the entire heat pipe, special care

should be taken to double check all joints for possible leaks. After

assembly of the heat pipe, all joints should be coated with several

thin layers of "Glyptol" or its equivalent.

6. The wicking chamber of the heat pipe should be evacuated to

about 10- 2 to 10 - 3 mm of Hg. before charging the chamber with water.
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When evacuated, the chamber should be charged with approximately 100

to 150 milliliters of distilled water. Over 150 milliliters of water

may result in an excessively large pool of liquid on the bottom of the

wicking chamber. If the heat pipe length is changed, the amount of

charge should be changed proportionately.

7.2 WICKING MATERIAL TESTING

Wicking material testing experiments should be continued to deter-

mine the volume transport qualities of different wicking materials.

The experiment should be carried out under constant temperature con-

ditions. A burner should not be used at the evaporator end of the

wick, since the elevated temperature may change the surface tension

and viscosity of the working fluid. If obtained with heating, the

data may not represent the true operating conditions inside the heat

pipe.

7.3 FUTURE HEAT PIPE TESTS

i. Test runs should be performed on shorter lengths of the wick-

ing chamber to determine what effect the wick length has on the "burn

out" wattage. For the horizontal case Eq. (8) should be further veri-

fied.

2. Fluids other than water should be employed in the wicking

chamber to determine their operating characteristics. These fluids

should then be compared to water for possible future application.

3. Combinations of two different fluids should be employed in

the wicking chamber. Compatibility and other operating characteristics

should be determined for all practicaL combinations of the fluids.
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4. A new heat input unit with a sufficiently small time constant,

so that the transient phenomena inside the wicking chamber may be ob-

served during heat input changes,should be designed and built.
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LIST OF SYMBOLS

A cross-sectional area of wick (Z 2 ),

A minimum cross-sectional area of wicking chamber (Z 2 )

C arbitrary constant (M-Z/t)

g acceleration of gravity (Z/t 2 )

hfg latent heat of vaporization of liquid (q/M)

K wick permeability ( 2)

L actual length of wicking material (M)

m mass flow rate (M/t)

AP capillary pumping head (F/Z2 )

AP gravitational head (F/ 2)

APL  liquid viscous drag (F/Z2)

AP vapor pressure drop (F/Z2 )

Q heat transfer rate (q/t)

r mean pore radius of wicking material (M)

r effective pore radius of wick at condenser (k)
c

r effective pore radius of wick at evaporator (Z)
e

V velocity (Z/t)

v volume flow rate (k3/t)

w total wick width (M)

6 liquid contact angle in wick at condenser

6 liquid contact angle in wick at evaporator
e

P absolute viscosity of liquid (F-t/k2) or (M/t-k)

v kinematic viscosity of liquid or vapor (Z2/t)

P liquid density (M/k3)

*Dimensions in parentheses are: F - force, M - mass, Z - length,
q - heat (F-), t - time.
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liquid surface tension (F/Z)

angle between heat pipe axis and gravitational field
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APPENDIX A: SAMPLE CALCULATIONS

"Burn out" power rating per cm width of wick (Refrasil #C100-28):

Q _ 10 watts - 0.594 watts/cm
w 16.85 cm

Required transport rate of water in the Refrasil for a "burn
out" wattage of 10 watts:

Q = pvhfg

* Q

fg

Q = 10 watts = 143.5 cal/min
h = 582 cal/g @ 26.70C.
Sfg

v = volume transport rate
p = 1 g/cm3 @ 26.7 0 C. for water

* 143.5 cal/min

(582 cal/g)(l g/cm3 )

v = 0.247 cm /min

Cross-sectional area of wick:

A = (thickness)(width)

thickness = 0.016 in. = (4.06)(10- 2 ) cm

width = 6.625 in. = 16.85 cm

A = (4.06)(10-2)(16.85) = 0.685 cm2

Required volume transport rate per cm2 cross-sectional area:
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v 0.2 47 cm
3/min 2S-- = 0.361 cm3/min-cm 2

A 0.685 cm2

Available volume transport rates from horizontal wicking performance
tests:

Wicking material: Refrasil #C100-28
Wicking fluid: distilled water
Fluid temperature: 26.7 0 C.

Unused material; 2.50 cm wide, 31.0 cm long

1. Calculated from volume input measurements:

* total volume
V( 31 .0/2 cm) total time

2.30 cm3

14.33 min

= 0.1605 cm 3/min

v 0.1605 cm 3/min
A (15.5 cm) (2.50 cm) (4.06)(10-c ) cm

= 1.58 cm / m i n -cm2

v _ (15.5 cm)(1.58 cm 3/min-cm2 )
A (81.9 cm) (81.9 cm)

= 0.299 cm 3/min-cm 2

2. Calculated from velocity which was derived from dis-
placement vs time plot:

log x 1 2 kt = x 2

log kt 2
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(25.0)
k = .00 69.4 cm2 /min (using experimental point)

69.4t = x 2

dx 1
V = 34.7 - cm/min

dt x

34.7
V - - 0.424 cm/min

81.9

= V = 0.424 cm/min = 0.424 cm3/min-cm2

= 0.424 cm 3/min-cm2 for 81.9 cm wick length

Used material; 2.5 cm wide, 80.0 cm long

1. Calculated from volume input measurements:

total volume
( 4 0 .0 cm) = total time

6.40 cm

188.5 min

= 3.39 X 10-2 cm3/min

v 3.39 X 10 -2 cm3 / min
A (40.0 cm) (2.50 cm)(4.06 X 10-2 cm)

= 0.334 cm 3/min-cm2

v (40.0 cm)(0.334 cm 3/min-cm 2 )
A (81.9 cm) (81.9 cm)

= 0.163 cm 3/min-cm
2
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2. Calculated from velocity which was derived from displacement
vs time plot:

log x 1 2log x I , kt = x
log kt 2

(60.0)2
k 37.6 cm2 /min

96.0

37.6t = x2

dx 1
V 18.8 - cm/min

dt x

v 18,8-- = V - -= 0.229 cm/minA 81.9

= 0.229 cm 3 /min-cm2 for 81.9 cm wick length

Liquid velocity in wick as acquired from the required volume
transport rate, also assuming that entire wick area was capable
of transporting liquid:

V = 0.361 cm3 /min-cm2
A

= 0.361 cm/min

If actual wick area for transporting liquid was approximately
1/5 total area, A, due to the Refrasil fibers:

V(max )  5V = 5(0.361 cm/min)

1.805 cm/min
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Maximum Reynolds number of liquid flow in wick based on L
max

V L
max max V = 1.805 cm/minRe max

max v
L = assumed to be total wick width
max

= 16.85 cm

v = 0.540 cm2 /min at 26.70C for liquid

(16.85 cm)(1.805 cm/min)

(0.540 cm2 /min)

56.3 for water in wick at 26.7 0 C.

Maximum vapor velocity in the wicking chamber as acquired from
the required volume transport rate:

v
v

max A
c

S specific volume of vapor
v specific volume of fluid

v (specific volume)
V = vapor
max A (specific volume)

c fluid

v = vapor volume transport rate
*V
v = fluid volume transport rate

= 0.247 cm 3/min
A = 21.8 cm2

c

V mx= (0.247 cm 3/min)(633.7) @ 26.7C.
max

(21.8 cm2 )(0.0161)

= 446 cm/min

Reynolds number of vapor flow in the wicking chamber, based on L
max

V L
Re max max

max V

V = L46 cm/min
max

L = dewar diameter
max

= 7.62 cm

V = 234 cm2/min @ 26.7 0 C for vapor
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Re =(7.62 cm)(446 cm/min)

(234 cm /min)

= 14.5 for water vapor @ 26.7 0 C.
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ABSTRACT

In Part I, wicking material tests were made on Refrasil No. C100-

28. The tests were run on 9-in. X 1-in. Refrasil strips. Displacement-

time curves were extrapolated for predicting the performance of a

21-3/4 in. heat pipe.

In Part II, heat pipe tests were run with a well-defined wick

length of 21-3/4 in. and a total width of 7 in. The same Refrasil

was the wicking material. An open-ended dewar housed the heat pipe

system which consisted of heat input, mass transfer, and heat removal

sections. .Two electric heaters supplied heat input, while circulat-

ing water was used for heat removal.

Both Parts I and II showed water to be a much better operating

fluid than ethyl alcohol or 50 percent ethyl alcohol by weight. Ethyl

alcohol appeared to be only slightly better than the 50 percent mix-

ture. At zero degrees the maximum heat transfer capacities were 15,

4, and 2 watts, respectively, for the three fluids. The predicted

wattages from Part I were generally higher due to greater ease in

saturating the wicking material with fluid.

A gap effect created by sewing two layers of wicking material

together greatly enhanced the heat pipe performance. At zero degrees,

water transferred over 80 watts, as compared to 15 watts previously.
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1. INTRODUCTION

Future space exploration will entail more and more extravehicu-

lar activity. Consequently, it becomes necessary that the astronaut's

space suit provide him with a suitable living environment. One ne-

cessity is provision of a satisfactory thermal environment.

Present systems utilize liquid-cooled undergarments which need

an intricate system of valves, pumps, and auxiliary equipment. Heat

pipes could be used to create a system of less complexity and greater

efficiency. The complexity of the system could be reduced because

a heat pipe is a closed system which needs no resupply or adjustment

after assembly. No pumps, compressors, or auxiliary equipment are

needed during operation. Efficiency is increased because a heat pipe

commonly transfers heat on the order of 100-1000 times faster than

the best conducting metals.

A space suit thermoregulatory system must be capable of trans-

ferring heat from the astronaut's body to an area on the suit where

the heat can be rejected either to space by radiation or to a porous

plate sublimator. In performing such tasks, there are no restrictions

on the orientation of a heat pipe. Wicking materials are used to

provide fluid travel from the heat rejection areas to the heat input

areas, even against the force of gravity.

At temperatures below 320F, a fluid such as alcohol or an alcohol-

water mixture could be used. A mixture might compensate for the low

latent heat of the alcohol since the two fluids will tend to separate



2

and occupy opposite ends of the heat pipes. Thus, the distance across

which the alcohol must transfer heat would be reduced.

In space suit applications, the heat pipe configuration and heat

transfer rates indicate that the ability of the wick to transfer the

fluid will be more of a limiting factor than the pressure drop due

to vapor flow. Consequently, this study was restricted to the per-

formance of the wick.

During the last few years, there has been considerable activity

in the study of heat pipes as indicated by the numerous technical

sessions on the subject at the meetings of several professional socie-

ties, such as ASME [lit, AIAA [2], and other combined meetings [31.

A detailed literature survey will not be presented here, however;

only references which have direct bearing on this study will be given.

tNumbers in brackets refer to entries in REFERENCES.
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2. HEAT PIPE OPERATION

A heat pipe consists of three distinct sections. First, a heat

input section or evaporator section evaporates the operating fluid.

Second, the small pressure gradient along the heat pipe forces the

vapor through the mass (vapor state) transfer section to the third

section, the heat rejection or condenser section. Here, the vapor

condenses before returning to the heat input section via the mass

(liquid state) transfer section. Capillary action or gravitational

force is the means of returning the fluid.

Mass return to the heat input section by capillary action requires

the use of a wicking material. Commonly used wicking materials are

fine wire screens, porous solid materials, and natural or synthetic

cloths.

8<



3. GENERAL HEAT PIPE THEORY

For the purpose of this work, a relatively simple theory, such

as given in [4,5], is quite adequate. This theory will only be briefly

summarized here.

The temperature gradient along a wick limited heat pipe is very

small due to the small pressure gradient. Consequently, conduction,

radiation, and sensible convection heat transfer will all be negli-

gible compared to heat transferred as latent heat of vaporization.

Assuming all heat transferred is due to latent heat, the heat trans-

fer rate (Q) is the product of mass flow rate (m) of fluid in the

wick and latent heat of vaporization (h ) of the fluid at the oper-

ating temperature of the system. The maximum heat transfer capability

of the heat pipe is then %ax = m h where mm may be interpreted
max fg max

as the flow rate occurring when the wicking material is dry at the

evaporator end.

The following four basic parameters may be used to find an ex-

pression for the maximum mass flow rate. They are

(i) the capillary pumping head of the wick (AP),

(ii) the vapor pressure drop (AP ),

(iii) the liquid viscous drag (APL), and

(iv) the gravity head (AP ).

The acceleration effects in the wick can be ignored [5]. From a bal-

ance of pressure heads, the equation for the operation of a heat pipe

becomes

Ap > AP + AP + AP ()
c -- v L g (1)

Substituting appropriate terms for the pressure heads, Eq. (1) becomes
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20 > pLm (2)-> - + pgL cos
r -pKA

where AP has been assumed to be negligible. 2a/r is a maximum value
V

for AP which occurs where the wick becomes dry. Rearrangement of
C

Eq. (2) gives

SpKA - pgL cos ) (3)

Therefore,

pKA 2a - pgL cos l (4)
max VpL r

and

a pKA 2c - pgL cos ) hfg (5)
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4. EXPERIMENTAL WORK, PART I

APPARATUS AND TEST PROCEDURE

The apparatus used for testing the wicking material Refrasil

No. C100-28 is shown in Fig. 1. The objectives of the tests were to

obtain fluid front displacement and volume transport data as functions

of time.

Fluid was supplied to one end of the test wick by a 100 milli-

liter supply burette. Excess fluid dripping from the saturated end

of the wick was collected in a 100 milliliter receiver burette. There-

fore, the total volume transferred along the wick was the difference

between readings of the supply and receiver burettes.

The test wick was supported on a 1 centimeter-square mesh screen.

Fluid losses by evaporation were minimized by

(i) placing the wick and screen in a 31 mm inside diameter

plexiglas tube,

(ii) using a hood to partially cover the area where the fluid

was introduced, and

(iii) saturating the atmosphere around the wick by leaving some

of the test fluid in the tube before each test.

A copper wire was attached to the support screen at 2-in. inter-

vals along the wick with an additional wire placed at the first lo-

cation. After removing insulation from the ends of these wires, the

ends were inserted into the wick pores. All wires were connected to

a 25-point thermocouple switch whose main terminals were connected

LQ "I<
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to an ohmmeter. When the wick was dry, the ohmmeter indicated an in-

finite resistance between any wire and the additional wire at the first

location. Immediately after the wick pores occupied by a wire were

wetted, the resistance between that wire and the additional wire changed

(over a period of about 1 second) from infinity to about 1 megohm.

After one cross section was wetted, the thermocouple switch was ad-

vanced to the next wire to detect wetting there. As the wetting front

reached each wire, as indicated by the first change in resistance,

the total distance of wetting front down the wick and the total elapsed

time of the test, measured by a stop watch, were recorded. At the

9-in. location, supply and receiver burette volumes were recorded as

well. The curves in Figs. 2-6 were constructed using the displacement-

time data. The results will be discussed after the description of

Part II of the experimental work.



5. EXPERIMENTAL WORK, PART II

5.1 APPARATUS

Figure 7 shows the test set-up which is the same basic set-up

used and described in detail previously [4,5].

Dewar: The three main elements of the heat pipe (heat input,

mass transfer, and heat rejection sections) were housed in a 7.62 cm

I.D., 8.90 cm O.D., 101.5 cm long double open-ended, silvered glass

dewar. The dewar was made of two concentric glass cylinders with the

surfaces in the annulus silvered. It provided insulation in the ra-

dial direction between the interior and the surroundings. Unsilvered

window strips located axially along the top and bottom of the dewar

allowed inspection of the interior after assembly. A combination of

0-rings and gaskets was used to seal the dewar in the axial direction.

Also, a radial tube between the inside of the dewar and the exterior

was provided near the condenser end to allow charging of the wicking

chamber with the desired fluid, and to provide connection of a vacuum

system to the interior and passage of thermocouple wires entering the

dewar.

Heat Input Section (Evaporator): Two electrical heating elements

were used as the heat input source. The heater closer to the mass

transfer section (main heater) was used for the total heat input, while

the other (guard heater) was used to minimize axial heat flow away

from the chamber. An accurate measurement of heat input to the mass

transfer section could then be obtained by recording input wattage
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to the main heater. Electrical energy was supplied to each heater

from a variable transformer. Wattmeters were used to measure the

power inputs. An O-ring sealed aluminum disc wall between the main

heater and the mass transfer section provided a uniform source of heat

to the chamber.

Heat Transfer Section (Wicking Chamber): Wicking material Refrasil

No. C100-28 was used because past experience proved it to be superior

in water lift rate and horizontal transfer rate.

Four horizontal strips of wicking material were used to eliminate

gravitational effects over a given cross section of the heat pipe.

The two center strips were 2-1/16 in. wide, while the top and bottom

strips were 1-7/16 in. wide. A wicking cage was utilized to suspend

the Refrasil, as well as to prevent axial movement of the heat input

and heat rejection sections. Also, circular pieces of Refrasil were

attached to the aluminum discs at each end forming the heat input and

heat rejection sections to evenly distribute fluid and to supply fluid

to the horizontal wicking strips.

Heat Rejection Section (Condenser): An O-ring sealed aluminum

disc was used in the heat rejection section, as in the heat input sec-

tion, to provide uniform heat transfer. After being conducted through

the aluminum disc, the heat was removed by circulating cool water through

the condenser section.

Temperature Measurement: Temperatures throughout the system were

measured by monitoring twenty-two copper-constantan thermocouples. One

thermocouple was placed across a mica disc between the main and guard
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heaters. With the desired heat input set on the main heater, the guard

heater was continually adjusted to keep the temperature gradient at

zero. Thus, it was ensured that the desired heat input would flow

into the mass transfer section. Another thermocouple was placed across

the inlet and outlet cooling water lines as a check on the heat trans-

ferred along the heat pipe. The twenty remaining thermocouples were

used to record temperatures at various locations on the heater and

condenser aluminum discs and in the wicking chamber.

Wicking Chamber Manifold: A wicking chamber manifold was located

near the condenser end to make the necessary connections to the wick-

ing chamber. This manifold contained a large vacuum valve for evacu-

ating the dewar through a glass access tube in the side, as well as

a small needle vacuum valve to purge non-condensible gases from the

chamber. Another small needle valve allowed the chamber to be charged

with the working fluid. Passage of thermocouple wires into the cham-

ber was made possible by a transfer plug. Connection of a pressure-

vacuum gage to the chamber was accomplished by a union on the mani-

fold. This union was later used in connecting a mercury manometer

to the chamber. Finally, another union was made available for direct

connection to the chamber itself.

Temperature Recording: A 21-point Leeds and Northrup millivolt

recorder was used to record the twenty temperature measuring points.

The temperature gradients between the two heaters and over the cool-

ing water lines were monitored on a potentiometer.



5.2 TEST PROCEDURE

-2

The wicking chamber was first evacuated to 15 X 10 mm of mer-

cury. Then, for testing of single layers of Refrasil, 45 ml of work-

ing fluid was injected into the chamber. However, for testing dou-

ble layers of material, difficulty was experienced in initially fill-

ing the gaps with fluid. This made it necessary to fill the entire

chamber with liquid. Then, the greater part of the fluid was removed

using a makeshift sump pump consisting of a gallon jug and the vacuum

pump.

As heat was added through the heaters, non-condensible gases im-

mediately began to build up in front of the condenser aluminum disc.

This caused a temperature gradient to build over the length of the

heat pipe. When the gradient reached 5-100 C, the needle vacuum valve

was opened slightly to purge these gases from the system. At heat

inputs below the burn-out wattage, the temperature gradient along the

heat pipe reduced to about 10C or a little larger for large heat in-

puts.

After purging several times (over a period averaging thirty min-

utes to an hour), the heat input was increased if burn-out had not

occurred. Naturally, test runs were shorter for testing of double

layers of Refrasil since the fluid flowed more rapidly. At or above

the burn-out wattage, purging did not reduce the temperature of the

heater aluminum disc to previous levels. Instead, the temperatures

indicated by the thermocouples on the disc continued to increase.

RQ<--
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When this happened, the heaters were shut off so the wicking material

could resaturate with fluid.

Condensible gases purged from the system were condensed by a cold

trap immersed in dry ice and methanol before they could reach the vacuum

pump. The cold trap was changed every 2-3 hours as very little fluid

accumulated there. The temperature gradient between heaters was moni-

tored constantly during testing and the guard heater was adjusted

accordingly to keep it at zero. Also, before increasing heat input,

the temperature difference between the cooling water inlet and outlet

lines was recorded, as was the cooling water flow rate. Unsuccess-

ful attempts were made during purging of non-condensible gases to meas-

ure the volume and alcoholic content of fluid accumulated in the cold

trap. The volume accumulated during a normal run was much too small

for accurate measurement and analysis.
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6. DISCUSSION AND RESULTS

In Part I, the fluid transport rate along the wick was found

using the equation,

v = A dx (6)
dt

where v is the volumetric flow rate, A is the cross-sectional area

of flow and dx/dt is the velocity of the wetting front.

The velocity of the wetting front was found by differentiating

the displacement-time equations plotted in Figs. 2-6. The equations

of the curves were found using first-order, least squares approxi-

to the log-log plots.

Since the cross-sectional area of flow was not known, it was

necessary to make an approximation using volumetric flow data. The

total volume input over the test length divided by the total elapsed

time gave the volumetric flow rate for a wick length about one-half

that of the test length (see development in sample calculations).

Since tests with water at zero degrees inclination produced the most

consistent volumetricflow data, those data were used in finding the

cross-sectional area of flow. This area was used as an approximate

area for other tests. All testing in Part I was done on 9-in. X 1-in.

test strips.

The results (see Tables I and II and Figs. 8-14) indicate water

has the highest flow rate, while pure ethyl alcohol and 50 percent ethyl

9<
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TABLE I

SINGLE LAYER OF REFRASIL NO. C100-28

VOLUMETRIC FLOW RATE AT 21-3/4 IN. (ML/MIN)

PER INCH WIDTH

H2 0 E. Alc. 50% E. Alc.

00 0.073 0.017 0.006 Wick #2

Figs. 2 and 8

00 0.030t 0.011

50 0.032 0.004

100 0.027 0.001 Wick #8

Figs. 5, 11, and 12

150 0.023 0.000tt

900 0.009 0.002tt

Refrasil

A = 0.016 in.
solid

0.016 in.

1 in.

Area of flow = 0.011 in.2

= 68 percent of Asolid
solid

tFigure 5 indicates a bad point; therefore, 0.074 ml/min may be more
accurate.

ttThese numbers are only approximate due to the extremely small flow
rates and relatively high evaporation rates of the fluid.
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TABLE II

DOUBLE LAYER OF REFRASIL NO. C100-28

VOLUMETRIC FLOW RATE AT 21-3/4 IN. (ML/MIN)

PER INCH WIDTH

H20 E. Alc. 50% E. Alc.

00 0.865 0.346 0.617t Wick #5
Figs. 3 and 9

00  0.809 0.213 0.191 Wick #6
Figs. 4 and 10

00 0.735 0.400

50 0.471 0.182

100 0.248 0.691 Wick #9
Figs. 6, 13, and 14

150 0.122 0.034

900 0.016 0.006

0.25 in.-J - 0.25 in.

S0.016 in.

Refrasil

Edging material - 0.016 in.

2
Area of flow = 0.040 in.

= 125 percent of 2A
solid

tAppears to be inaccurate, comparing Figs. 9 and 10.
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alcohol by weight were much lower. The pure alcohol appeared to be

only slightly better than the 50 percent mixture. These results are

in good qualitative agreement with the analytical studies of [6].

Comparison of Figs. 9 and 10 indicates the 50 percent alcohol run at

zero degrees in Fig. 9 is inaccurate. This run is also shown in Fig.

3.

With a single layer of wicking material, the calculated water

flow rate for a 21-3/4-in. X 1-in. wick was from 0.073 ml/min at zero

degrees to 0.009 ml/min at ninety degrees. The flow rate for pure

alcohol was from 0.011 ml/min at zero degrees to 0.002 ml/min at ninety

degrees.t The 50 percent mixture flowed at 0.006 ml/min at zero de-

grees.

Two layers of wicking material sewn together increased the flow

rate of water by a factor of about ten at zero degrees. This factor

diminished to about two at ninety degrees, indicating that water did

not flow in the vertically oriented gap. The improvement factor for

alcohol was extremely erratic, although much larger than for water.

The inconsistency suggests either inaccuracies in the extrapolation

of distance-time curves or inconsistent filling of the gap. At zero

degrees, the factor was about 25 and, at ninety degrees, the factor

was 3. The 50 percent mixture increased by a factor of about 30 at

zero degrees. The increase in flow rates due to a gap next to the

wick has been suggested by previous workers [7,8].

tSee second footnote in Table I.

S4<"
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Results of Part I were used to predict the heat transfer capacity

of a 21-3/4-in. heat pipe operating with similar wicking, fluid, and

inclination. Test results for a single wick gave predicted wattages

of 21.0 at zero degrees and 2.6 at ninety degrees for water and 0.90

at zero degrees and 0.17 at ninety degrees for pure ethyl alcohol.

A predicted range of 0.5-1.7 watts for the 50 percent mixture at zero

degrees was found using latent heats of alcohol and water, respectively.

Results tabulated in Table III show that the burn-out wattages

obtained with water in Part II were lower than those predicted from

tests outside the heat pipe. Apparently, there is difficulty in satu-

rating the wicking material in the heat pipe and in keeping the gaps

between the wick completely filled. A bottleneck in the mass return

process occurs at the condenser end where the fluid must travel ver-

tically in the circular Refrasil patches. The differences are espe-

cially large for double layers of wicking material since rapidly mov-

ing fluid must be supplied to the gaps. The situation was alleviated

somewhat by placing several circular Refrasil patches on the condenser

aluminum plate. Ends of the horizontal strips were directed verti-

cally downward between these patches to create a better gap effect.

Also, thin spacers were placed between the aluminum disc and the wick-

ing cage. Finally, the wicking cavity was temporarily filled with

fluid prior to testing. After removing most of the fluid, the gaps

could then resupply themselves by capillary action.

The equation for maximum heat transport in a heat pipe was given

by Eq. (5).
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TABLE III

PREDICTED (PART I) AND ACTUAL (PART II) BURN-OUT WATTAGES

FOR A WICK LENGTH OF 21-3/4 IN. AND

FOR A TOTAL WIDTH OF 7 INCHES

Predicted Wattage Actual Wattage
(Part I) (Part II)

Inclination to Single Double Single Double

Fluid Horizontalt Wick Wick Wick Wick

Water 00 21.0 211, 232, 248 15 +1 > 80tt
-2 -

+1
Water 10 12 -2

Water 20 11 1

Water 30 9 ±1

Water 40 8 ±1

Water 50 9.1 135 7 ±1 45 ±5

Water 80 5 ±1

Water 100 7.7 71 5 ±1 45 ±5

Water 150 6.5 35 5 ±1 25 ±5

Water 900 2.6 4.5

EthylAE. i 00 0.90, 1.4 17.9, 28.8, 33.5 4 ±1
Alc.

El. 50 0.33 15.2

Ethyl 100 0.08 5.8
Alc.

Ethyl 150 0.00ttt 2.8
Alc.

Ethyl 900 0.17 0.5
Alc.

50% E. 00 0.5-1.7 16-54.7 2 ±1
Alc.

25% E.
Alc.

75% E.
00 2 ±i

Alc.

tFlow against gravity if not 00.

ttThis was the maximum power input of the heater.

tttSee second footnote in Table I.
S$;<



19

For the horizontal position, the maximum heat transfer capacity Q ,ax

becomes inversely proportional to the wick length L. Tests by the

author and by others [4,5] support this relationship with burn-out

wattages of 15 (the author) and 10 for wick lengths of 21-3/4 in. and

32-1/4 in., respectively, for the same total width of 7 in.

Tests with water at various angles of inclination produced burn-

outs from 15 watts at zero degrees to 5 watts at eight, ten, and fif-

teen degrees. The reduction in capacity change rate with an increas-

ing operating angle agrees with the behavior of the cosine function

[see Eq. (5)].

At zero degrees inclination, the burn-out wattage for pure ethyl

alcohol was 4 watts. This represents a decrease by a factor of 3.75

from water. Equation (5), however, predicts a factor of about 13.5.

However, the burn-out wattage of 4 is higher than predicted by tests

outside the heat pipe. This is probably due to inaccuracy of heat

input measurement for such low inputs. Second, the burn-out wattage

of 15 for water is low because the wicking material in the heat pipe

could not be thoroughly saturated with fluid. Part I tests indicated

factors of 15.0-23.1 for a single wick and 6.30-13.9 for a double

wick. Both ranges have the right order of magnitude when compared

to the predicted value of 13.5.t

tIt is notable that wick performance at times varied considerably for
different test sections of Refrasil (see Tables I and II). This is
probably due to variation in pore size.

<74
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Fifty percent alcohol had a burn-out wattage of only 2 watts

at zero degrees. This was expected. A burn-out of 1 watt with 25

percent alcohol agrees with Woo [6], but disagrees with Feldman and

Whitlow [9]. However, in a wick limited heat pipe, the effect of

vapor flow is negligible, whereas in Ref. [9], the improvement may have

been due to compression of the vapor. Seventy-five percent alcohol re-

sulted in 2 watts burn-out.

Figure 15 shows temperature variation along the heat pipe for

25, 50, and 75 percent alcohol by weight mixtures. Due to the very

low wattages, the 25 and 50 percent curves do not represent steady

state conditions, so these curves may not be very useful for compari-

son of temperature differences. The curves, however, do seem to in-

dicate correctly the location of a transition from alcohol at the con-

denser end to water at the heater end in agreement with Feldman and

Whitlow [9].

Usable data for cooling water temperature change in Part II

tests were not obtained. Such data could have been used with the

cooling water flow rate as a check on heat input measurement. Heat

conduction through the water piping and other heat losses prevented

accurate thermocouple recordings. Also, purging of non-condensible

gases from the system caused a refrigeration effect at the condenser

end due to the small amounts of working fluid extracted. The magni-

tude of this effect was estimated to be about 1.5 watts from the ma-

terial collected in the cold trap. Cooling water was actually cooled

at times, instead of heated. Occasionally, formation of ice near the

manifold in the vacuum hose as well as cooling of the manifold were

noted.
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7. CONCLUSIONS AND RECOMMENDATIONS

The simple experimental set-up shown in Fig. 1 can be used to

obtain quantitative design data on wick materials with relatively

volatile fluids, too. Appropriate precautions, however, must be made

to minimize evaporative losses.

A liquid-filled gap adjacent to and running parallel to a wick

increases the liquid transfer rate severalfold. Consequently, it can

be recommended that a wick should always be designed with an adjacent

gap provided by either another layer of wicking or a suitable wall.

The gap should be as narrow as possible since refilling a wide gap

inside a sealed heat pipe could be practically impossible. For the

same reason, during the initial filling of the heat pipe, steps should

be taken to ensure complete filling of all such gaps with the working

fluid. The results of [7] indicate that gaps of any appreciable size,

i.e., if the wick is not touching the wall or the next layer forming

the gap, tend to lose their liquid fill, particularly in an adverse

gravity gradient.

In a wick limited heat pipe, the addition of water to alcohol

does not improve the performance, but tends to affect it adversely.

A temperature difference, however, can be established across the heat

pipe by the use of such mixtures. The property parameter suggested

by [6], ph oo/p, seems to give good qualitative predictions for the

performance of mixtures in a wick limited heat pipe. If the heat

pipe is vapor-limited, however, the effect of higher vapor densities

occuring with the mixtures could improve the heat transfer rates as

suggested by [9].
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The following recommendations can be made for future work on

the heat pipes:

(1) Circular Refrasil patches should be placed between the

aluminum disc and the wicking cage at each end of the

heat pipe. Longer wicking strips should then be employed

so that the ends can be run vertically between the patches.

This will increase fluid flow at the ends of the wicks,

particularly at the condenser end.

(2) Larger heater wires will allow finding the maximum heat

transfer capability of double wick layers.

(3) Tests should be run with the condenser end of the heat pipe

kept at a temperature below 320F. To do so, it would be

necessary to use a fluid, such as Freon, circulating in a

closed system through the cooling chamber at the condenser

end. A refrigeration unit would be needed to cool the cir-

culating Freon.

(4) Investigate chemical methods of determining alcoholic con-

tent of purged gases. This will aid in determining how

the two fluids in a mixture separate in the heat pipe.

1 O<
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LIST OF SYMBOLS

A cross-sectional area of wick (£2)t

g acceleration of gravity (£/t2 )

hg latent heat of vaporization of liquid (q/M)

K wick permeability (2 )

L actual length of wicking material (M)

m mass flow rate (M/t)

AP capillary pumping head (F/ 2 )

AP gravitational head (F/R2 )

APL  liquid viscous drag (F/i2 )

AP vapor pressure drop (F/2 )

Q heat transfer rate (q/t)

r mean pore radius of wicking material (k)

V velocity (U/t)

v volume flow rate (i /t)

11 absolute viscosity of liquid (F-t/ 2 ) or (M/t-k)

p liquid density (M/ 3 )

y liquid surface tension (F/i)

angle between heat pipe axis and gravitational field

tDimensions in parentheses are: F--force, M--mass, £--length, q--heat
(F-k), t--time.
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APPENDIX

SAMPLE CALCULATIONS

I. Finding Area of Flow £n x

kn x = s Zn t + Zn k n 1.0

x = kt s

dx s-i
= kst 9n t

dt
Schematic layout of Figs. 2-6

v = AL v E total volume in a wick of length
L (cm3 = ml)

v
A= - t E time at which flow reaches L

t (s - l ) / a  /s o
0L k (min)

v = A -v volumetric flow rate at "x" (cm/min)
dt (ml/min)

v ( s -1)/so sx dx
- X- flow velocity at "x" (cm/min)

t L(s-1)s dt

1/s (s-1)/s
=sk x

(s-1)/s (s-1)/s
v will be exactly v /t0 if sx = L

Denoting this "x" by "x ," we have
o

( -1)/s

s

x = L/ss5 (s-1) (cm)

A = v/(dx/dt)

A = (v /t )/(k L ) (cm2 )
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A. Single Layer (Water at Zero Degrees)

s /( -1) (0.437)0. 437/ -0. 563

= 1.90

x = L/1.90

1/s (s-1)/sA = (v/t )/k L

0.614

(15.0) 1/. 437( 2 2 .8 5 .563/ . 437

= 0.070 cm2

= 0.011 in.2

B. Double Layer (Water at Zero Degrees)

s/( B -1) (0.51 ) 514 / -0.486
s = (0.514)

= 2.02

x = L/2.02

A = (vo/to)/k L( -1) /

4.06
1/0. 514 -0.486/0.514

(18.94) (22.85)

= 0.257 cm2

= 0.040 in.2
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I. Finding Predicted Wattages for Single Wick with Fluid at 800F

A. Water at Zero Degrees

QnMx =maxh fg

= phf g

= (1)(0.074)(581)(1/14.35)

min-in. width gm cal/min )
g)ca watts

= 3.0 watts/in. of width

Qhea pipe= (3.0)(2)[ 2 16+ 1 -)
= [(watts/in. width) (in. width)]

= 21.0 watts

B. Alcohol at Zero Degrees

Qheat pipe = (0.79)(0.011)(214)(1/14.35)(2) 2 1I + 1 7

S ) cm ) cal watts (in. width)
ea3 min-in. width m cal/min

= 0.91 watts

C. Fifty Percent Ethyl Alcohol at Zero Degrees

Qheat = heat = 1.7 watts

pipe upper limit pipehfg of H2 0

Qheat = %eat = 0.5 watts
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0.0089 0.1375

f(z) f(z)42 At top of Fig. 3.10, "- " should be " f
k i

47 Eq. (3.44), last line, second term in denominator,

"wR 1 (l+l)(wR2 )" should be "wR2P(1 tl) (wR )."

2 ( 252 Eq. (3.49), second line, " " should be " -2
aK bK

55 Eq. (3.53), fourth line, "cos (6ix)" should be "cos (6.y)."

63-65 Figs. 3.15-3.17, the vertical coordinate " r " should be " r - R1
b b

70 Fig. 3.20, in the figure the parameter "Qo" should be "Q'."
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a 2b
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74 TABLE 3.4, last two lines should be

(2n - 1) 1/m2 4,950 44,720(2nb l)7r

2b 1/ft2  460 4,160

162
and Figs. D.1 and D.3, in the figures delete the parameters "K"
164 and "L" and add the identification, wR1 , for the numbers in

columns on the right-hand sides.
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ABSTRACT

A biothermal model of living tissue has been studied which allows for
the inclusion of the effects of blood flow, local heat generation, conduc-
tion, and storage of heat on the heat transfer processes occurring in the
living tissue. A second order, partial differential equation, the "bio-
heat" equation, was obtained for the model. Due to the lack of reliable and
detailed data on the thermophysical properties involved, the tissue was as-
sumed to be isotropic and homogeneous and all properties were assumed to be
constant. Transient, as well as steady-state, closed form, analytical solu-
tions were obtained for cylindrical and rectangular geometries, and for vari-
ous parameters.

Based on the analysis, a few observations were made:

(1) Blood flow plays a significant role in the transfer of heat inside
the living tissue.

(2) Transient times for reaching a so-called "fully developed" tempera-
ture profile in the tissue were estimated to be of the order of
5-20 minutes. These transient times were found to be strongly
dominated by a geometrical parameter.

(3) At elevated metabolic rates, maximum temperature may occur in the
tissue rather than in the inner core.

(4) Knowledge of the exact shape of the heat flux on the skin was
found to be unimportant for the determination of the temperature
distribution away from the skin surface.

(5) Results obtained for the cylindrical and rectangular models were
remarkably close for the practical range of variables. The
rectangular geometry, however, was easier for computation.

The analysis was partially validated by measuring the temperature pro-
files on the skin of the thigh cooled by parallel tubes in contact with the
skin.

Particular applications of the biothermal model were directed to the
problem of extending the thermophysical capabilities of man. Providing a
"micro-climate" to man by means of cooling tubes that are in direct contact
with the skin, e.g., extravehicular space suits, was a major concern in this
study. To this end, a cooling garment, including a cooling hood, was con-
structed. The garment consisted of sixteen individual pads made of Tygon
tubes. These pads were grouped to provide independent supply of cooling
water to six separate regions of the body: head, upper torso, lower torso,
arms, thighs, and lower legs. Experiments with the cooling garment were
directed at exploring the characteristics of independent control of tem-
perature and removal of excess heat from separate regions of the body.
Five activity schedules consisting of alternate sessions of standing and
treadmill walking were used with five test subjects. Quasi-steady state
and, to some extent, transient characteristics of the proposed scheme of
independent regional cooling were studied. The results show that there
are regions that require more cooling for this type of activity than others
(thighs, lower legs, head). It was also demonstrated that heat strain was
reduced as a result of wearing the cooling garment.
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PRECEDING PAGE BLANK NOT FILMED
NOMENCLATUREt

a, half distance between cooling tubes, [Li

ak coefficient in Eqs. (3.61) and (3.62)

A total skin surface area, [L2 ]

A defined by Eq. (3.69)

b depth of tissue layer, EL]

b k  coefficient in Eqs. (3.61) and (3.62)

ck defined by Eq. (E.19)

C3  defined by Eq. (E.20)

Cb  specific heat of blood [L 2 - 2 T -

ck  coefficient in Eqs. (3.61) and (3.62)
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C{ I Fourier cosine transform operator, defined by Eq. (3.28)
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-3
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-3
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h height, [LI
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I. modified Bessel function of the first kind of order i
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k thermal conductivity, [MLe - 3 T- ]
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k* ratio of thermal conductivities, defined by Eq. (B.8)

K, modified Bessel function of the second kind of order i

M defined by Eqs. (3.40) or (3.42), [L T]

qb rate of heat transported by blood, defined by Eq. (3.1),
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Q total metabolic rate, [ML2 6- 1
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s defined under Eq. (D.6)

t time, [6]

t* characteristic time, []

T tissue temperature, ET]

T arterial blood temperature, [TI
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T reference temperature, ET]
ref

U(4R) defined under Eq. (D.6)

V volume, [L ]

w defined by Eq. (3.9), E[L

wb  blood perfusion rate per unit volume, [ML - 6 ]8

W weight EML6-2I
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W[i, 2 1 Wronskian, defined by Eq. (3.24)
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surface, EL]

y coordinate, normal to skin surface, [LI

Y Bessel function of the second kind of order i

Y(y) defined by Eq. (3.26), [TI

z coordinate, parallel to the axis of cooling tubes, [LI

a thermal diffusivity, [L2 0- 1

-1
a defined by Eq. (3.19), EL- TI

n

Sratio of width of cooling tube to cooling tube spacing

y Euler's constant

-1
Y. defined by Eq. (3.51), [L-

-1
6 defined by Eq. (3.50), [L-

n

'i defined by Eq. (3.60), [L-

defined by Eq. (3.17), EL- I

Idefined by Eq. (3.46)

0 defined by Eq. (3.8), [TI

0*(y) variable blood supply temperature, [TI

X defined by Eq. (3.18), EL- I
n

A(wr) defined by Eq. (3.38), [T]
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ip defined by Eq. (3.59), [L- I

--1
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dummy variable of integration, ELI

p specific gravity of tissue, [ML- I
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a defined by Eq. (3.55), [L - ]

42~G<



viii
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Sangular coordinate in cylindrical model
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$(n) Psi or Digamma function
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1. INTRODUCTION

The thermal system of homeotherms, and that of the human body

in particular, has long been of interest to many researchers. The

ability to maintain a fairly constant "deep body" temperature and

to dissipate or preserve heat under widely varying environmental

conditions have been among the most fascinating aspects of this sys-

tem.

With the progress of scientific knowledge and methods, emphasis

has shifted from mere observations of this system and its functions

to more systematic studies. The efforts were directed to provide

more understanding and insight into the nature and behavior of the

mechanisms that govern such thermal phenomena. For completeness, a

brief outline of the thermoregulatory system of homeotherms, as cur-

rently understood, is given in APPENDIX A.

In common with many branches of physiology, the study of the

thermoregulatory system is approaching a stage in which work of de-

scriptive nature will yield progressively less in the way of im-

proved insight. Consequently, analytical approaches become more and

more necessary. Analytical modeling of various aspects of the thermo-

regulatory system is expected to provide improved understanding of

the mechanisms of thermoregulation and heat transfer. From these

models new experimental directions are expected to emerge.

In our era of advanced technology, man has also been venturing

into and exploring environments that are, among other things, thermally

hostile to life. As a result, man's natural physiological abilities

had to be augmented to render these hostile environments habitable.



The required artificial systems had to provide "micro-climates" to

man that were capable of countering any adverse thermal changes in

the environment.

As an example, the first such system used for pilots in the Royal

Air Force was a gas-ventilated suit [11t. Such suits proved to be

of limited capacity for the removal of metabolic heat and hybrid sys-

tems emerged. These "second generation" suits were composed of two

sub-systems; a water cooled garment, first suggested by Billingham

in 1959 [2], fabricated from flexible tubes in contact with the skin

and an overlying gas-ventilated system. In the current Apollo suits

that are of this hybrid type [11, a change in body temperature and

activity level is compensated by a uniform change in the cooling wa-

ter inlet temperature. It would seem reasonable, however, to cool

active muscles first; i.e., where heat is generated. Moreover, there

are regions in the body that are more temperature sensitive, e.g.,

the back, that may render a uniform change in temperature less tol-

erable from a comfort standpoint.

Consideration of the above-mentioned points led to formulation

of the specific objectives for this study:

(1) Analytical modeling of the thermal behavior of the living

biological tissue. Blood flow effects were included in

the model explicitly because heat transfer is an important

concomitant of the circulatory system.

(2) Experiments with cooling pads directed at partially

tNumbers in brackets refer to entries in REFERENCES.
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validating the temperature distributions obtained from the

analysis.

(3) Exploration of the characteristics of regional cooling,

i.e., independently cooling various regions of the body,
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2. REVIEW OF RELATED WORKS

During the last few decades, three major avenues have been pur-

sued to study and modify the thermal behavior of biological media,

namely:

(1) Analytical modeling of the thermal system and partitional

calorimetry relating to homeotherms.

(2) Experimental studies of man-environment interactions in-

volving whole-body or partial cooling devices, e.g., cool-

ing garments, hoods.

(3) Measurements of pertinent thermophysical and physiological

properties, both "in vivo" and "in vitro."

The following is a brief review of works done in these three

areas.

2.1 ANALYTICAL THERMAL MODELING

The fact that the body exchanges water vapor with the environ-

ment was first established by Santorio, an Italian physician living

in the sixteenth and seventeenth centuries [31. He spent a portion of

the latter part of his life in a large balance; his food intake and

excreta were accurately weighed. Santorio attributed the differences

he found in the two weights to losses of water evaporated from the

skin and carried by respiration. He termed these losses "insensible

perspiration." Although not concerned with the heat transfer as-

pects of the processes he had observed, Santorio can still be con-

sidered as one of the founders of the "bio-heat transfer" school.

However, it was not until the second half of the eighteenth cen-

tury, that Lavoisier [4] conceived the idea of the human body being

a heat generator. With this concept, more rigorous studies of the
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man-environment heat exchanges and the heat transfer processes oc-

curring inside the body, have become feasible.

It appears that Burton [51 in 1934 was the first to apply heat

transfer equations to the human body. He assumed a uni-dimensional,

steady state model with constant properties and uniform heat gener-

ation in the tissue. Solving the equation analytically, he obtained

a parabolic temperature distribution.

Eichna, et al. [6] in 1945, and Machle and Hatch [71 in 1947

adopted the concept of "core and shell" and applied it to the human

body. In this method, two temperatures are assigned to the body,

i.e., deep body (rectal) and skin temperatures. Skin temperature

was taken as a weighted average of temperatures of various regions

of the skin. Heat exchange between man and his environment was then

calculated as a function of conductance and core and shell temperature

differences. This approach to the problem has since then been popular

particularly with physiologists. However, it is not concerned with

the details of temperature distribution and effects of blood flow.

In 1948 Pennes [8] introduced two new concepts into the problem

of modeling the thermal behavior of the human body. First, he de-

picted the human body as consisting approximately of cylinders with

circular cross section. Second, he realized the important role that

blood flow plays in the process of heat transfer in the tissue and

introduced an additional term into the heat equation, making the heat-

ing effect due to blood flow proportional to its heat capacity rate

and to its temperature change within the tissue. Further, assuming

the body to be homogeneous and isotropic with constant physical

properties and uniform rate of heat production, he obtained a steady
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state solution in terms of Bessel functions for the temperature dis-

tribution in the forearm. The boundary condition satisfied at the

skin was in accordance with Newton's cooling law (convective boundary

condition). Pennes also commented that axial temperature gradients

of the extremities can be neglected when compared to radial gradients

and that the heat production in the skin and subcutaneous fat is of

low order of magnitude.

As is suggested by the title of their article, Wyndham and co-

workers in 1952 [91 examined the use of heat exchange equations to

determine changes in body temperature.

Pursuing the concepts advanced by Pennes, Hertzman in 1953 [10]

obtained correlations between skin temperature and cutaneous blood

flow.

The "computer era" in thermal modeling began in 1955 when

Taylor [111] advanced the idea. of using an electrical analog to simu-

late heat transfer modes occurring inside the human body and between

man and his thermal environment. He divided the body.into five

layers: skin, functional peripheral shell (subcutaneous tissue and

part of the muscles), functional central section (skeletal muscle,

heart and blood), core organs (liver, kidneys, central nervous system)

and the inert tissue (skeleton and alimentary tract). He also assigned

values of thermal capacity, conductance, and heat generation to these

layers. Taylor proposed an electrical analog circuit composed of re-

sistances, capacitances and potential sources to simulate the human-

environment thermal system.

Herrington, in two articles in 1958 [12] and 1959 [13], discussed

afull scale human body model for thermal exchanges. Using algebraic
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and least-square concepts, he derived a five element linear differ-

ential equation to describe extensive calorimetric data collected

from seated, clothed human subjects. Rate of change of the skin tem-

perature with respect to metabolic heat input, evaporative cooling,

ambient air and ambient radiation temperature, were the result of the

former work. In the latter, the data were compared with those ob-

tained for an electrically heated body model ("copper man").

In 1958 Westland [14] followed up the ideas developed by Taylor

of a biothermal analog to simulate and study interior and exterior

heat transfer mechanisms related to the human body. Assuming one-

dimensional heat flow and equivalent conductance to account for blood

flow and the thermal conductivity, he studied the transient response

of the human body to thermal exposures. Osman in 1962 [151 refined

and improved on Westland's work.

A similar approach to the problem of heat transfer associated

with the human body was used by Wyndham and Atkins in 1960 [16].

They approximated the body by a series of concentric cylinders cor-

responding to the core, muscle, and skin; and considered radial heat flow

only. Using a numerical technique and utilizing an analog computer

they obtained transient solutions for their model. At about the same

time, Crosbie, et al., [17] employed a similar technique and applied

it to a one-dimensional slab model. They assumed the slab to be di-

vided into the same three layers and assigned constant, uniform, but

different temperatures to each of the layers and compared their re-

sults with physiological data. Neither of the latter two approaches

included a blood flow term explicitly.

In 1961 Wissler [18,19] initiated a study of mathematical
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modeling of the human thermal system. He divided the body into six

cylinders corresponding to the extremities, trunk, and head. Includ-

ing the blood flow term, he obtained analytical solutions for radial

heat transfer for both the steady and transient states. He also in-

troduced the concept of a central "pool," where blood from all re-

gions is gathered, mixed, and redistributed, and the idea of lumped

heat exchange between arteries and veins. Later, in 1964, he improved

his model by dividing the body into fifteen circular cylinders inter-

connected by blood vessels [201. These cylinders were-subdivided

into fifteen layers and numerical solutions were obtained on a digi-

tal computer. Just recently, Wissler increased the number of compart-

ments into which the body is divided to include some 250 elements [211].

Perl, in 1962 [221, conceived of a method of indirect measurement

of blood flow rates by employing Fick's second principle. He solved

analytically the steady state and the transient problems and compared

his results with experiments. Extensions of the initial work were

published by him and co-workers in 1963 [231, 1965 [241, and 1966 [25].

The idea of using an analog computer for simulating temperature

regulation in man was further utilized by Brown in 1963 [261. He

divided the body into four regions (central, muscle, subcutaneous re-

gion and skin) and studied interactions with the environment as well

as heat distribution within the body. Further development of the

biothermal analog computer was given by him in 1966 [27].

Numerical solutions for a uni-dimensional, four layer transient

model were also obtained by Layne and Barker [28] in 1965 and by

Stolwijk and Cunningham [291. In 1966 Birkebak, et al., considered

the application of heat transfer equations to the animal system [30].
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In 1966 Soltwijk and Hardy [31] represented the human body by

three cylinders corresponding to the head, trunk, and extremities

and assumed the ends to be perfectly insulated. Each of the cylinders

was subdivided into layers to represent the skin, muscle, viscera,

brain, etc., and each sublayer was assumed to be at a constant tem-

perature. Only radial heat flow was assumed and the effect of blood

flow, as well as metabolic heat production, was included. Eight si-

multaneous differential equations were written for the various sub-

layers and three "controller" equations. These equations corresponded

to evaporative heat losses, muscle blood flow changes with temperature

and exercise rate, and also took into consideration the effects of

shivering on heat transfer. The set of equations was solved on an ana-

log computer yielding transient temperature distributions for various

environmental and metabolic conditions. These two researchers were

the first to introduce the concept of the passive system and active

controller as applied to the human thermoregulatory system. According

to this concept, the passive system represents a complex transfer func-

tion between the controller and the disturbance. The controller is re-

sponsible for maintaining the human body within the narrow limits of

acceptable thermal conditions by activating the various thermoregulatory

mechanisms, i.e., vasoconstriction or dilatation, sweating, and shiver-

ing.

A group from the University of Washington became interested, in

1967 [32], in the effects of electromagnetic heating patterns in human

tissue. One year later [331, they also studied the propagation of

acoustic waves and the resulting thermal effect in biological materials.

In 1969, two solutions to the problem, one using an analytical method
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[34] and the other a finite difference method [351, were presented

by this group.

Richardson and Whitelaw in 1968 [361 studied transient heat trans-

fer in the human skin. They constructed two probes: a cylindrical and

a rectangular slab. The probes were made of nylon and methyl metha-

crylate (Perspex), respectively, and had thermocouples embedded in them

at known locations. After being immersed in a constant temperature

bath, the probes were brought into contact with the skin (enclosed

areas of arm-pit and clenched hand) and the temperature of the thermo-

couples was recorded. Using available analytical solutions to the heat

conduction equation in solids, the conductance of the human skin was

evaluated. It was found that the change in conductance was independent

of the surface temperature andheat flux to which the skin was exposed.

Infrared thermometry was utilized by Gros and Gautherie in 1968

[371 to study transient changes in human skin temperature as a function

of ambient temperature. By means of a simplified model of heat ex-

change between the organism and the environment (only one-dimensional,

transient conduction was considered), a mathematical law was derived.

This law, obtained by using Laplace transform, was expressed by error

functions and gave satisfactory representation of the experimental

data.

At about the same time Mitchell and Myers [38] developed an ana-

lytical model for countercurrent heat exchange between arteries and

veins. They proposed two different configurations for the counter-

current heat exchange that can be fgO2i n animals. These were: equal

number of arteries and veins (arm of man, leg of bird,rete of a sloth's

leg) and veins encircling a single artery (fins of whales and
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porpoises). Applying the principle of conservation of energy they ob-

tained analytical solutions to the various configurations and compared

their results with available experimental data.

Buchberg and Harrah [391 in 1968 tried a numerical solution of a

two-dimensional, steady state model cooled by a network of tubes at

the skin. They divided the slab into four layers corresponding to the

core, musclature, a so-called functional periphery, and the skin.

They assumed the thermal conductivity of the tissue to be a function

of temperature and no heat to be generated in the skin. They did

not include a blood flow term explicitly.

Chato in 1968 [401 reported on a method for measuring both local

thermal diffusivity and blood perfusion rate. He modeled the tissue

as an infinitely large medium with a spherical heat source (thermistor

bead) embedded in it. He obtained analytical solutions and satisfac-

tory results were obtained experimentally.

In 1968 Trezek and Jewett [411 initiated a study of the thermal

field emanating from a cylindrical probe embedded in a tissue, in

general, and in a brain, in particular. They were initially interested

in applications to cryo-surgical probes. Other works on the subject

were published later by Trezek and Cooper in 1968 [42], Trezek in 1969

[43], and Cooper in 1970 [44].

A study of the stationary heat transport from a heated spherical

probe located in a tissue was made in 1969 by Priebe and Betz [451.

The tissue was assumed to be of spherical shape, too, and was considered

to be isotropic and homogeneously perfused by blood. Assuming the

discrete capillary heat sinks as well as the venous heat sources to

149<



12

be "smeared" over the whole volume of the tissue, they obtained ana-

lytical solutions to the problem. This treatment provided a method

for estimating local blood flows. Also, thermal conductivity as a

function of blood flow was obtained.

Just recently, Keller and Seiler [461 reported on an analysis

of peripheral heat transfer in humans. In a steady state, one-

dimensional continuum model, they accounted for effects of heat

conduction, convection by blood flow and vascular heat exchange.

They did not assume heat to be generated inside the tissue. Solving

the resulting three simultaneous differential equations, they ob-

tained general expressions for the effective conductivity of the tis-

sue. They also discussed a method for estimating the degree of ar-

terial precooling by the vessel spacing.

2.2 WATER COOLED GARMENTS

A most complete review on water cooled garments (WCG) was re-

cently given by S. A. Nunneley [47]. She discussed the history of

water cooled garments in the United States and in the United Kingdom.

The discussion also includes variables affecting WCG design and oper-

ation, the development of automatic control and possible uses for re-

gional cooling. Some 118 references are cited in this work and form

a complete list of works pertinent to the subject.

2.3 MEASUREMENT OF THERMOPHYSICAL PROPERTIES

A large number of works describing methods and techniques for

measuring the thermophysical properties of biological tissues has
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been published. These include both "in vitro" and, to a lesser extent,

"in vivo" measurements.

Webb in 1964 [481 published a monograph entitled "Bioastronautics

Data Book" in which he listed extensive data on the human body. He

also included a chapter on thermophysical properties.

In 1966 Chato [49] made a rather extensive survey of thermal dif-

fusivity and conductivity data on biological materials. This work was

extended in 1968 [50]. He reported the data available at that time to

include properties of internal organs, skin, biological fluids, frozen

and then thawed materials and animal integuments.

Pond in 1968 [51] measured the thermal conductivity of rat brain.

For the measurements he utilized a thermistor bead and used the same

concepts as those suggested earlier by Chato [40].

Recently, Cooper [44] completed the development of a needle-probe

for measuring thermal properties of human organs. The needle probe is

essentially a copper-constantan thermocouple in the shape of a long,

thin cylinder. This probe, while being at a temperature different than

that of the organ, is suddenly plunged into the tissue. The changes

in temperature of the probe are then recorded until it reaches the

temperature of the medium. Thermal diffusivity values are calculated

from the initial portion of the response curve. This method was developed

to allow for blood flow effects to be taken into account and thus may

be used for both "in vivo" and "in vitro" measurements. Cooper and

Trezek report data obtained via the needle probe technique elsewhere [52].

Chato and co-workers further applied the thermistor bead to measure

effective conductivity values of cat brain and hind leg muscle "in vivo"

and "in vitro" [53].
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3. THEORETICAL ANALYSIS

3.1 DEVELOPMENT OF THE GOVERNING PARTIAL DIFFERENTIAL EQUATION

Among the factors to be considered when attempting the modeling

of the human thermal system are the-. following:

(1) Geometry of the body.

(2) Heat capacity of the body (thermal inertia).

(3) Conduction of heat due to thermal gradients.

(4) Metabolic heat production.

(5) The role of blood flow in heat transfer; i.e., transport

of heat by circulating blood and countercurrent heat exchange

between large blood vessels.

(6) Thermoregulatory mechanisms in the body and their functions;

i.e., vasomotor activity, sweating, shivering, increased

metabolism due to glandular activity, and pilo-motor-activity

(goose flesh). (In warm-blooded species other than humans,

an additional mechanism of panting is also of importance.)

(7) Thermophysical and physiological properties of various or-

gans and tissues; e.g., thermal conductivity, specific heat,

density, blood perfusion rates, etc., and their dependence

upon temperature and location.

(8) The interaction with the environment and its condition;

i.e., dry and wet bulb temperatures, pressure, and air mo-

tion relative to the body.
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In what follows, these factors will be considered while a heat

balance on a differential element of tissue will be established.

Storage, conduction, and production of heat within the tissue

will be assumed to be represented by the well-known heat equation.

The additional term representing the heat transported by the blood

stream will be derived using Fick's principle. This principle, when

applied to biological systems, can be stated as, "the amount of a

substance taken up by an organ (or by the whole body) per unit time

is equal to the arterial level of the substance minus the venous level

times the blood flow" [54]. When applied to the amount of heat gained

(lost) by the blood perfusing an element of tissue, it yields

qb = WbCb(Tin - Tout ) (3.1)

Equation (3.1), when combined with the heat equation, obtains

3T
pc -= V(k VT) + wbb(Tn - Tout) + qm (3.2)

Equation (3.2) is the mathematical statement of the first law of ther-

modynamics describing the "in vivo" relationship between the various

modes of heat transfer, storage, and production within a biological

tissue. It may be referred to as the "bio-heat" equation. Similar

forms were obtained by Pennes [8], Hertzman [10], Wissler [18], Perl

[221, Chato [401, Trezek [42], and Keller and Seiler [46].

In view of the complexity of the thermal behavior and structure

of a living tissue and also because of the lack of accurate, detailed
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data of the thermophysical properties and the distribution of blood

perfusion and metabolic heat production rates in the body, a number

of assumptions should be made to facilitate analytical modeling.

(1) The thermophysical properties of the tissue will be assumed

constant and the tissue will be assumed to be homogeneous

and isotropic.

(2) The temperature of blood leaving the tissue will be assumed

equal to the temperature of the tissue. This assumption

can be justified by the structure of the capillary bed and

the slow rate of flow of blood through the capillaries

which makes them almost perfect heat exchangers.

(3) The temperature of blood entering the tissue will be assumed

constant and equal to the temperature of the artery. Later,

however, this assumption will be changed and an arbitrary

function will be assumed to represent the inlet temperature

of blood perfusing the tissue.

(4) Blood perfusion and metabolic heat production rates will

be assumed uniform and constant throughout the entire layer

of tissue and will be assumed to represent average values.

Accordingly, Eq. (3.2) becomes

DT 2c = kV T + b b (T - T) + qm (3.3)

Equation (3.3) will be applied to the various layers of tissue

and analytical solutions will be given for different geometries and

boundary conditions.
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The various thermoregulatory mechanisms outlined above are included

in the present model indirectly. The major role that these mechanisms

play in the thermoregulation of the homeotherm [55] is expressed,

among other effects, by the modification of local heat transfer char-

acteristics, such as blood perfusion (vasomotor activity) and meta-

bolic heat production rates (shivering and glandular activity), and

the boundary conditions (sweating and pilo-motor activity). Accord-

ingly, the effect of the thermoregulatory mechanisms on the transport

of heat in the tissue can be incorporated by properly changing the

values of the rate of blood flow and heat generation. The interac-

tion with the environment will be accounted for in the following sec-

tion via the boundary conditions.

3.2 GEOMETRIES, BOUNDARY AND INITIAL CONDITIONS

This study will be primarily concerned with the removal of meta-

bolic heat produced in the body by means of a network of cooling tubes

that are in direct contact with the skin. Consequently, it is possi-

ble to approximate the very involved geometry of the body by circu-

lar cylinders or even by strips of rectangular cross section.

To this end, the tissue is assumed to be divided into three layers:

(1) A skin layer composed of epidermis, dermis, and subcutane-

ous fat as shown in Fig. 3,1. The actual thickness of the

layer varies from 1-6 mm [56]. All excess metabolic heat

will be assumed to be removed at the contact areas between

the epidermis and the cooling tubes.
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(2) A layer called skeletal muscle composed of all the muscles.

(3) An inner core layer consisting of the skeleton and all the

internal organs. At steady state, this layer will be as-

sumed to be at a constant temperature which will vary with

metabolic rates [57].

Assuming the body to be represented by cylinders of circular

cross section, two configurations of cooling tubes seem conceivable:

(1) The tubes running perpendicular to the axis of the cylin-

der, Fig. 3.2.

(2) The tubes running parallel to the axis of the cylinder,

Fig. 3.3.

Other intermediate configurations of the cooling tubes can be

represented as a combination of these two. However, as the inside

diameter of the cylinders becomes larger (which is the case with the

trunk, thighs, and lower legs and approximately with the arms, too),

the cylindrical configuration can be replaced by strips of rectangu-

lar cross section, Fig. 3.4. The calculations of the temperature

distribution inside the tissue thus become simpler and easier with-

out any significant loss of accuracy, as is demonstrated later.

As mentioned above, the temperature of the interface between

the skeletal muscle and the inner core is assumed constant and uni-

form and equal to that of the inner core. An assumption of a constant,

uniform flux at this interface is also possible and the two will be

considered separately. At the skin surface, a heat flux correspond-

ing to the amount of heat to be removed by the tubes will be assumed.
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Figure 3.2 Representative section of the cylindrical model
with the cooling tubes on the skin running per-
pendicular to the axis of the cylinder.
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Figure 3.3 Representative section of the cylindrical model
with the cooling tubes on the skin running paral-
lel to the axis of the cylinder.
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Figure 3.4 Representative section of the rectangular model.
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First, an arbitrary distribution of the flux will be assumed,t but,

later, it will be shown that knowledge of the actual shape of -the

flux function is not necessary as long as the heat is removed only

by the tubes [58]. Because of the symmetry of the problem, the lines

of symmetry running through the tubes and half-way between two adja-

cent tubes can be assumed adiabatic. At the interface between the

skin layer and the skeletal muscle, two matching conditions will be

satisfied: equal temperatures and equal heat fluxes.

The steady state temperature distribution in the tissue at a

given metabolic rate will be assumed to be the initial condition for

the transient state.

3.3 ANALYTICAL SOLUTIONS

It will be assumed that the changes along the axes of the cool-

ing tubes are small compared to those occurring in the directions

perpendicular to the tubes. In mathematical notation, this statement

becomes

- 0 (3.4)

and, consequently, the problem becomes two dimensional. Steady state

solutions in the two most relevant coordinate systems, i.e., rectan-

gular and cylindrical, will be given first. These solutions will

tBy properly modifying the distribution of the specified flux func-
tion over the skin, heat removed by sweat evaporation and convection
can be incorporated, too.
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be used as initial conditions for the more general transient cases.

3.4 STEADY STATE, RECTANGULAR COORDINATES

The first case to be studied is the one with the skin and skele-

tal muscle considered as separate regions using rectangular coordi-

nates. All metabolic heat is assumed to be removed at the skin along

the portion contacted by the cooling tubes. No heat is assumed to

be removed at the rest of the skin surface. At the interface between

the skeletal muscle and the inner core, a constant temperature, equal

to that of the inner core, is assumed. Because of the symmetry of

the problem, the boundaries at x = 0 and x = a are assumed to be adia-

batic. Two matching conditions of equal temperature and equal heat

flux are satisfied at the interface between the skin and the skele-

tal muscle. Although the problem as formulated above neglects end

effects, it can still be considered general for, the solution presented

below pertains to the areas covered by the cooling pads, modeled as

rectangular, symmetrical, two-dimensional strips. Temperature dis-

tributions in the tissue underneath the areas not covered.by the cool-

ing pads can be obtained by properly modifying the heat flux at the

skin while using the same approach as presented below. The problem,

in mathematical notation, becomes:
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where

0. T. (x,y ) - T (3.8)

Wi Cb
2 b (3.9)

i k.

Qi'
Qi -k- (3.10)
Qi k.

f(x) is an arbitrary function representing the flux of heat removed

by the cooling tubes at the skin. Figure 3.5 shows the two regions,

the coordinate system, and the boundary conditions for this case.

The solutions to the above two simultaneous sets were obtained

by using appropriate transformations and Fourier series expansions.

In terms of regional temperatures, these solutions are:

For the skin layer,

QI 'fa G
T (x,y1 ) = T + E(0) cosh (wbi)

1 12

sinh (w lyl) [Q I k2 2 klG tanh (w2b2 )

w 2 + cosh (w b )
1 w I I

cosh [wI (b1 - yl)] 0o a

H(w) + k cosh ( b1 )
n 1

tanh (b 2 ) cosh [~l(b - y )]

H(1)

sinh (C y )

k cos (X x) (3.11)

I 64<
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Y2, Inner Core

T2 T2

b2
Skeletal
Muscle

a T, aT2 0
Ox Ox

axx

b1  Ti = O Skin aTax a x

a T - f, (x) aT I
ay kl ay=

Ya

Figure 3.5 Geometry and boundary conditions for the rectangu-
lar model. Skin layer and skeletal muscle are
considered as separate regions.
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For the skeletal muscle layer,

E [ Q sinh (w b 1)
T2 (x, y 2 )  T + E(y 2(y) + w G

0o
k sinh [w2 (b 2  2 ) y-2

H(w) cosh (w b ) 1
n= 1

0 sinh [ 2(b 2 - Y2 )]
*b cos.(A x) (3.12)

H() cosh ( b ) n

where

E(y) - 1 - (3.13)
Q2[ cosh (w2Y) f sinh Lw2(b 2 - y)1

2 cosh (w k2 2  cosh (w2b 2 )

Bf
G w E(O) sinh (wlb ) - - [cosh (w b ) - 1] (3.14)

H() k2C2 cosh (1ibl) + k 1 sinh (l b ) tanh ( 2b ) (3.15)

Ba

f a f( ) d (3.16)

0

2 2 2
2 = w. + (3.17)
1 1 n

X - (3.18)
n a

Ba
2 f f(x)S 2 cos (Ank) dC (3.19)

n a k n

0

Equations (3.11) through (3.19) were programmed on the digital

computer and temperature distributions for various values of parame-

ters and metabolic rates were obtained. TABLE 3.1 gives dimensions

and thermophysical properties of the model used for the numerical

I66<



TABLE 3.1

PHYSICAL AND PHYSIOLOGICAL PROPERTIES OF THE RECTANGULAR BIOTHERMAL MODEL CORRESPONDING
TO A 139 LB (63 KG) ADULT MALE WITH 90 MM HG MEAN ARTERIAL

BLOOD PRESSURE AND TOTAL METABOLIC RATE OF 290 BTU/HR (85 W). REPRODUCED
IN PARTS FROM BUCHBERG AND HARRAH [391 AND BRAD [591.t

Property Region

Skin Skeletal Inner Core Whole Body
Muscle Heart Muscle Rest of Body

kg 3.6 31.0 0.3 28.1 63.0
Mass

lb 7.94 68.40 0.66 62.00 139.00

3 N)
m 0.00350 0.02800 0.00028 0.02700 0.05878

Volume

ft3  0.125 1.000 0.010 0.965 2.100

m 0.02475 0.019800 -- 0.019350 0.041625
Depth

ft 0.00812 0.06500 -- 0.06350 0.13662

Width of m 0.01945 0.01945 -- 0.01945 --

St ipift 0.064 0.064 -- 0.064 --

Blood ml/min 462 840 250 3848 5400
Flow

Rate ft /min 0.0165 0.0300 0.1375 0.0089 0.1929

tThese numerical values were used in the computations, but they do not imply accuracies correspond-
ing to the number of digits given.

(continued)



TABLE 3.1 continued

Property Region

Skin Skeletal Inner Core Whole Body
Muscle

Heart Muscle Rest of Body

Oxygen ml/min 12 50 29 159 250

Consumption ft3 /min 0.000429 0.001785 0.001035 0.005675 0.008924

Blood Flow
Percent Rate 8.6 15.6 4.7 71.1 100.0

of
Total Oxygen

Consumption 4.8 20.0 11.6 63.6 100.0

O

Thermal w/m-0C 0.419 0.540 --

Conductivity Btu/hr-ft-OF 0.242 0.311 -- -- -
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computations. The first twenty terms of the series were used in the

numerical solution. It was found that by doing so the truncation

error introduced was less than 0.01; i.e., I 20I1 - 11 < 0.01 0F/ft.

A typical temperature distribution in the tissue for one set of parame-

ters is shown in Fig. 3.6.

Three observations were made based on the preceding analysis:

(1) If y/x > 2 (the ratio of b/a in the present rectangular

model was about 2.3), the isotherms become essentially in-

dependent of x; i.e., the isotherms become parallel and

a function of depth only as illustrated in Fig. 3.6. This

observation leads to the conclusion that, at the interface

between the inner core and the skeletal muscle, the boundary

conditions of constant, uniform flux or temperature become

identical for any practical purposes. From a physiological

standpoint, this conclusion is not surprising. It is known

that, in a steady state, inner body temperature is maintained

at a fairly constant level while, at the same time, most of

the heat generated inside the body is removed at the skin.

The heat to be removed at the skin is transported there

by the blood stream and by conduction through the tissue,

mechanisms that are included in the present mathematical

model.

(2) One of the most difficult parameters to assess is the shape

of the flux at the portion of the skin contacted by the

cooling tubes. Fortunately, it was demontrated [581 that

the actual shape of this function is not of great importance

169<
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99.70 F

99.85

99.7
-Eqs. (5.11) &(.12)

Skeletal
Ref. [39] Muscle

701
90

60

S X 50 1 95 85
59.03 85

70 Skin

Figure 3.6 Temperature distribution in the separated tissue

for the rectangular model. Dashed curves indi-

cate temperature distribution obtained by Buchberg

and Harrah [391 without blood flow. Qm = 2600

Btu/hr, (760 w), . = 0.1 and constant temperature

at inner core.
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so long as it provides for the removal of all the excessive

heat at the skin. This was done by assuming an arbitrary,

linear heat flux function at the skin. This function varied

from its maximum value at x = 0 (centerline of the cooling

tube) to 2/3 of the maximum at x = Ba (edge of the cooling

tube) or f2 /f = 1.5. The mean value of the flux over the

area covered by the cooling tube was taken to correspond

to the appropriate amount of heat to be removed. As a sec-

ond choice, this function was reversed; i.e., f 2/f 1 = 1/1.5.

With these two extreme assumptions, the temperature distri-

bution in the tissue was evaluated. The effect of select-

ing different flux functions at the skin was noticeable

only in the vicinity of the cooling tubes and became indis-

tinguishable at a very short distance away. Thus, knowl-

edge of the exact shape of the flux function is not essen-

tial and the error introduced by various functions is in-

significant so long as the above obvious condition is sat-

isfied. Figure 3.7 demonstrates this finding. Figure 3.8

shows the effect of increasing the contact area between

the cooling tubes and the skin (increasing 1) while f2 /f

is maintained at 1.5.

(3) It was found that, if b * (WbCb/k) 2 > 2.3, the maximum

temperature of the body occurs in the skeletal muscle rather

than in the inner core. This observation demonstrates,

among other things, the important role that the blood stream

plays in the transport of hea+ tin the body; for, without
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Temperature
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4-

2025
1350 Flux

Sl I I I. I
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x/a

Figure 3.7 Effect of changing the specified flux function on

the temperature of the skin for the rectangular
model. Qm = 2600 Btu/hr, (760 w), S = 0.1 and
constant temperature at inner core.
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Figure 3.8 Effect of increasing the contact area between the
cooling tubes and the skin on the temperature dis-
tribution on the skin surface. Qm = 290 Btu/hr
(85 w), f2/f1 = 1.5 and constant temperature at
inner core.
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this mode of heat transfer, the occurrence of a maximum

temperature inside the tissue will mean inability to adequately

dissipate heat with all the acute physiological consequences.

Only heat transported by the blood stream can by-pass this

"barrier" and reach the skin where it will eventually be

removed. From a mathematical standpoint, when the term rep-

resenting blood flow is not included in Eq. (3.3), as was

done by Buchberg and Harrah [391, the above-mentioned phe-

nomenon does not occur (Fig. 3.6, dashed lines). However,

there are cases when blood flow reduces significantly or

even vanishes; e.g., vasoconstriction. Therefore, a solu-

tion for this limiting case, wb + 0, is presented and com-

pared in APPENDIX B with the more general result that in-

cludes blood flow and the results of Ref. [391.

As was mentioned before, very little accurate and reliable data

are available pertaining to the thermophysical properties of the tis-

sue, local blood perfusion and metabolic heat production rates.

The most comprehensive source of thermophysical properties was given

by Chato [501. Scant physiological data can be found in medical or

physiological textbooks, such as the one by Brad [59]. Consequently,

any attempt to improve on the preceding analysis will have to be de-

layed until such data become available.

Nevertheless, two additional sets of solutions will be given.

The first additional solution is less detailed than the previous one.

It is obtained when the skin and skeletal muscle zones are combined
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to form a single zone.t The result is of gross nature, but, in view

of the inadequacy of the available data, it is almost as good as the

more complete one with the two zones separated and is easier for com-

putation. This case is presented and discussed in APPENDIX C.

The second additional solution assumes a variable, arbitrary

blood supply temperature rather than a constant one. Since this so-

lution is more detailed and requires more information on the actual

changes that the temperature of th e blood perfusing the tissue under-

goes, it seemed sufficient to assume a one-dimensional model with

uniform flux at the skin. It is believed that the extension of this

solution to two dimensions should not present any major difficulties.

In mathematical notation,

2
d + w [O*(y) - T] = -Q (3.20a)

dy
2

and the boundary conditions are

dT F
at y = 0 , dy= (3.20b)

at y = b , T = T (3.20c)

where F is the uniform flux at the skin.

This set was integrated using a Green function [60],

tThis procedure amounts to carrying the above solution to the limit
b, + 0 and b 2 + b, or b2 + 0 and b, + b, while assuming k, = k2 ,
w = 2 , and Q, = Q2 and reversing the sign of the flux at the skin.
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1 2

G(y,T) = (3.21)

1 (Y) 2W [qI 5(D 2 Y >

where 1 (y) and 2 (y) are two independent solutions of the homogene-

ous differential equation,

'"(y) - w2 (y) = 0 (3.22a)

satisfying,

~(0o) = 0 (3.22b)

2 (b) = 0 (3.22c)

namely,

Dl(y) = cosh (wy) (3.23a)

%2(y) = sinh [w(b -,y)] (3.23b)

and W[ 1 ,2 is the Wronskian defined

1 2
W[ ,'1 ] = 2 (3.24)

The solution obtained is

17G<
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T(y) = Q [ cosh (wy)] F sinh [w(b - y)]

1 2 cosh (wb) kw cosh (wb)

- cosh (wb) sinh [w(b - y)] f Y(T) cosh (wT) dT

0

b

+ cosh (wy) Y(T) sinh [w(b - T)] dT (3.25)

y

where, with the dummy variable T replaced by y,

Y(y) = T - 6*(y) (3.26)

and 8*(y) is an arbitrary function describing the variations of the

blood supply temperature. Figure 3.9 shows typical results obtained

for assumed linear temperature variations of the blood supply. It

can be seen that, as the slope of blood supply temperature increases,

skin temperature decreases and the maximum temperature of the tissue

is shifted toward the inner core.

If the boundary condition at the inner core, Eq. (3.20c) is changed

dT o
at y = b , (3.27)

(uniform flux instead of uniform temperature), a solution for the

temperature inside the tissue can be obtained by employing the finite

cosine Fourier transform

b

C{Q(y)} = f O(T) cos (V T) dT (3.28)

0
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1.0

0.8 *(y) = T - AT (1-y/b)

AT
0.6

Y 1
b 2

0.4 3

0.2

93 95 97 99 101 103
T,°F

Figure 3.9 Steady state, one.dimensional temperature distri-
bution in the combined tissue with variable, linear
blood supply temperature for the rectangular model.
Dashed line indicates locus of maxima. Q = 2600
Btu/hr (760 w), and constant temperature at inner
core.
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C{ ''(y)} = -V 2 C{0(y)} + (-1)n,'(b)- q'(0) (3.29)
n,

to obtain

F cosh (wy) - F cosh [w(b - y)]Q 1 o
T(y)= Tre f + - + sinh (wb)

w

b
b 00 f *(T) cos (v T) dT

+ 6*(T) dT + 2w2 0 2  (3.30)
W 2 2
w + V

0 n= n

where

V n_ (3.31)
n b

and e*(y) is the arbitrary function defined above.

3.5 STEADY STATE, CYLINDRICAL COORDINATES

In many cases, a closer approximation of the geometry of the

human body is achieved by representing it as a set of cylinders.

This is particularly true for the extremities and was used by many

investigators [8,16,18,31,331.

Two general cases were studied: the cooling tubes running on the

skin perpendicular to the cylinder (limb) axis, Fig. 3.2, and the tubes

running parallel to the axis, Fig. 3.3. The first case was studied

with the two zones separated, whereas only a solution for the combined

tissue was obtained for the second.

The geometry of the first case (assuming the gradients along

the axis of the cylinder to be negligible compared to those in the

plane perpendicular to it) is essentially rectangular and similar

to the one shown in Fig. 3.5. For completeness, the exact geometry

and boundary conditions are shown in Fig. 3.10.

The mathematical formulation for this case is
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a T f (z) aT,
ar ak1 ar

SaT O Skin C T
dz az

Skeletal
Ta O MuscleT =Oz Oz

R2

R1 2

T2  T2
RI I a

r Inner Core

Figure 3.10 Geometry and boundary conditions for the cylindrical
model with the cooling tubes on the skin running per-
pendicular to the axis of the cylinder. Skin layer
and skeletal muscle are considered as separate regions.
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SKIN SKELETAL MUSCLE

1 1 1 2 1 8 2 2 2
r + w = -w 1 Q (3.32a) r + w6 = -Q (3.33a)

r 3z2 r 3r- 3r-- 2 
2  

2

R1 2 < r < R2; 0 < z < a R1 <r < R ; 0 < z < a

F 1 f(z)
at r = 8 , (3.32b) at r = R1  02 = 0 (3.33b)

= 0 , a < z < a

36 12
at z = 0 , 0 (3.32c) at z = 0 , 0 (3.33c)

86 ae
1  2

at z = a , - 0 (3.32d) at z = a , 0 (3.33d)

8z 8z

matching conditions at r = R12'

61 = 02 (3.34a)
3 1 2

k = k (3.34b)1 ar 2 r
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where all the parameters are defined by Eqs. (3.8), (3.9), and (3.10).

The solution obtained is:

For the skin layer (F12 < r < R2 ),

12 12
R (w1r) +f o (wr)

Tl ( r , z ) = T + A(w2R2) 12 k
1 2 (W R )  klW 12
%1 (IR12) 1 1 10 (w1 R12 )

M
w1 K (w I R )
w1K1 1R2

kwKo R12 10 2R 12)- klK 1 1 ( w 1 12 o (  2 R 12

Sw (wRR12
2 1

1 (w r) - K (w r) 
(3.35)

Q w2k l (w2R12 01 1 n

w 2 (wR 2) E K1 (IR 2 )

k K2o 1R12 10(2R2) + k K1 (R 2) 00(2R12

)1 K o r) cos (Xn z) (3.35)



45

For the skeletal muscle (R < r < R 12),

Q wk 2(W R2 )J1 (w r)
T2 (r,z) = T+ A(w 2 r) + 1 (wR1 2)

w2 (wR 2
1

kiM

SK (w R2 )

K (w R12) 21(1R ) + Ko(W1R1 )2 (w R12)

U(wR 2) o 0 (w2 r)

o12

n

S K (R 2

Kl (C R12 )1 (1 R 12) + Ko(C R1 ) 21~ R 2)

%0 (C 2 r) cos (A'z) (3.36)

where

(i r) H Ik, i r)K,( R. ) + (l)k++lI \ )Kk('.r) (3.37)

01(wr) fa 00(wr)
A(wr) - 1 (3.38)

2 1( Rk 11 1 1 ) 2 12

-k2 201 1 1~2 10 R12) (3.39)

12 (w
0 R1 12

1 12

klW 0oo (w2R12 1 1 (wR2)
+ -- -(3.40)k2W2  1 (wR 1 (w I

2 10 2(W 2 )10 1R2

Observing that [611

(wR ) 1 (3.41)kk+1 wR

11 ~3 <
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Equation (3.40) can be rewritten

S12 kwR
E - k - (w1R12 10(wR 2 ) + k w2

I. and K. are the modified Bessel functions of the first and second1 1

kind of order i and w., fa' , Xn, and a are defined by Eqs. (3.9),

(3.16), (3.17), (3.18), and (3.19), respectively.

The solution to the cylindrical case exhibits the same charac-

teristics as the one for the rectangular case. However, it is more

difficult to obtain numerical results because of the presence of the

Bessel functions in the series part of the solution. Still, tempera-

ture distribution of limited accuracy for this case for the skin layer

and skeletal muscle considered as one combined tissue is shown in

Fig. E.l. Fortunately, it was found that, without any significant

loss in accuracy, the rectangular case yields results that are remarka-

bly close to the cylindrical ones, as will be demonstrated in a sepa-

rate chapter.

A special function, 1k] (ir), was defined to simplify the mathe-

matical derivation, Eq. (3.37). It is a combination of modified Bessel

functions of the first and second kind which was found to recur in

the solution many times. This function is further discussed in some

detail in APPENDIX D.

As was done for the rectangular model, additional solutions for

the combined tissue, including the limiting ones for no blood flow,

are presented in APPENDIX E.

184<
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The second steady state case in cylindrical coordinates is the

one with the cooling tubes running parallel to the cylinder axis.

Figure 3.11 shows the geometry and boundary conditions for this case.

The mathematical formulation for this case is

1 3e 21 8 e 2
r r w -Q (3.43a)

r r r r2 2

R 1 < r < R2 , 0 < <

with the boundary conditions,

at r = R , = 0 (3.43b)

r k ' < 1

at r = R2 , (3.43c)
-0 , < b< 1

at c = 0 , 0 (3.43d)

3e
at = ~1 ' -T = 0 3.43e)

Solution for this set was obtained by using the same technique

as before to yield

- 2 1

Wo(wr) fa oo(wr)
T(r,f) = T + - -1a 0

w1 (wR2) kw 0 I (wR)

00a 
1(wr)

-R2 1 (w cos (r0) (3.44)

n n1 n(w 2 ) 
+ w .I (wRl )

185<
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aT f ()a
dr k - O

ar

Combined
Tissue

aT aT

T= T1

Inner Core r

Figure 3.11 Geometry and boundary conditions for the cylindrical
model with the cooling tubes on the skin running
parallel to the axis of the cylinder. Skin layer and
skeletal muscle are considered as a combined tissue.
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where

= 2 1 f - cos (n) d (3.45)

S= nm (3.46)

m is the number of equally spaced tubes on the circumference.

The presence of the function ~P (wr) in the series of Eq. (3.44)

hindered accurate computation of the temperature distributions in

the tissue. This was true particularly in the vicinity of the cool-

ing tubes. For example, if one assumes m = 20, the capacity of the

computer is exceeded after the first two terms of the series for a

low metabolic rate. Also, when RI increases (while still being mean-

ingful physiologically), the accuracy of the computation is further

limited. Consequently, the temperature distribution obtained for

this case was considered of limited value and is not presented here.

This computational limitation was also one of the reasons why this

case was not studied with the zones separated.

Solutions for cases where the tubes run diagonally on the skin,

i.e., not parallel or perpendicular to the cylinder axis, can be ob-

tained as linear combinations of the above two extreme cases. This

can be done by resolving the flux function at the skin into two com-

ponents corresponding to the above two cases. Because of the linearity

of the equation, a linear combination of solutiRns;,constitutes a so-

lution to this more general case.

187<
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3.6 TRANSIENT STATE, RECTANGULAR COORDINATES

Available experimental evidence shows that the thermal transients

in the human body are of the order of a half hour [62]. Consequently,

the steady state solutions become of limited importance and transient

solutions should be sought.

The lack of accurate and detailed thermophysical and physiologi-

cal data hinders any detailed analysis. This is even more noticea-

ble in the transient cases. Therefore, the analysis presented below,

although successful in obtaining solutions to the problem, should

be considered approximate only. In view of these limitations, the

following assumptions will be made:

(1) The two outer zones, i.e., skin and skeletal muscle, will

be considered to constitute one combined tissue.

(2) All properties will be assumed to be constant and independ-

ent of time, temperature, and location.

(3) The temperature at the interface between the inner core

and the combined tissue will be assumed uniform and constant

and will correspond to the final condition.

(4) Step-like functions will be assumed to represent changes

in blood perfusion and metabolic heat generation rates; that

is, at t > 0, values of blood perfusion and heat generation

rates correspond to the final ones. This assumption can

be justified on the grounds that the transient time for

changes in these quantities is much shorter than the ther-

mal transients.

1 88<
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(5) The initial temperature in the tissue will be taken as the

steady state distribution. The final temperature distribu-

tion, as t -- c, was expected to correspond to the steady

state at the new metabolic activity level.

Two cases will be studied: one with a uniform heat flux at the

skin, i.e., one-dimensional, and the other with variable flux over

the skin, similar to the steady state case presented in APPENDIX C.

CASE 1:

1 6 8 6 2
t -y2 w + Q2 (3.47a)

0 <y <b ; 0 < t

with the boundary and initial conditions,

Fe
at y = 0 , - - (3.47b)

ay k

at y = b , 0 0 (3.47c)

Q, cosh (w1y) ] F1at t < 0 , -
2 cosh (w b) kww 1 1

sinh [w (b - y)]
cosh (w l b) (3.47d)

where

6 - T(y,t) - T1  (3.48)

and all the other parameters were defined before. Index 1 indicates

values prior to the step,t < , and index 2 values after the step,t > 0.

189<
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The solution to this case is

Q2 [ cosh (w2 y) F2  sinh [w2 (b - y)]
T(y,t) = T 2 cosh (w2b)J kw2  cosh (w2b)

22 F

2 F 1 ± (-l)n Q2 Q1y
7 ak2 2 2 2 Cos (6ny)

n =1 2 Y n 72 Y

exp (-ay2 t) (3.49)

where

6 (2n - 1)T
6 = 2 (3.50)n 2b

2 2 2
Y. = w. + 6 (3.51)1 n

Figure 3.12 shows results obtained for step changes in metabolic

rates. It is clearly seen that most of the changes in temperature

occur during the first five minutes when the step is from the low to the

high rate, and during the first twenty minutes when the step is from

the high to the low rate. After these periods, the temperature

of the tissue is essentially equal to the steady state temperature.

It should be noted that the temperature at the interface between the

inner core and the combined tissue was assumed constant. This assump-

tion, however, does not conform to the actual situation. Deep body

temperature is known to change almost linearly with changes in meta-

bolic rates [57]. However, the transient times of these changes are

much longer than those obtained for the temperature profile inside

the tissue. Consequently, the final configuration of the temperature

distribution inside the tissue will be reached after about 5-20 min-

utes from the onset of a change in metabolic rate. From then on,

only a shift of the "fully developed" temperature profile will occur.

190<



1.0 I I I 1.0 i i I l

0.9 - 0.9
t=0

0.8 - 5 sec - 0.8 - t = 0
30 sec 5 sec

0.7 - 1 min - 0.7 - 30 sec
5min 1 min

0.6 - 20 min 0.6 - 5 min

y (- ) y 20min0.5- 0.5
b b 1hr

0.4- - 0.4 -

0.3 - - 0.3 -

0.2 - 0.2 -
5min

0.1 - - 0.1 20min
1 hr

0.0 I I I 0.0 1
92 93 94 95 96 97 98 99 100 101 92 93 94 95 96 97 98 99 100 101

T, oF T, OF

Figure 3.12 Transient temperature distribution in the combined tissue for the
one-dimensional rectangular model. Step changes:
(a) from 290 Btu/hr (85 w) to 2600 Btu/hr (760 w)
(b) from 2600 Btu/hr (760 w) to 290 Btu/hr (85 w)
Constant temperature at inner core.
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When a variable flux is assumed at the skin, the problem becomes

CASE 2:

I V20e - w 2  + Q (3.52a)

0 < x<a 0 < y < b , Q <t

with the boundary and initial conditions,

ae f (x) x a
y

at y = 0 , (3.52b)

Dy

at y = b , 8 = 0 (3.52c)

at x = 0 , H = 0 (3.52d)x

at x = a , 3x = 0 (3.52e)

Qr cosh (w y) 1 far
at t <0 = [ cosh (wlb) | I

W 2 cosh (w b) kw

sinh [w .(b -, y)]

cosh (w b)
n =

1an I sinh [E (b - y)]
cos (X x) (3.52f)

1 cosh (1b) n,1

The solution to this set was obtained by using transformations

and a double Fourier series expansion to yield
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Q [ cosh (w2y) fa2 sinh [w (b - y )]

T(x,y,t) =T + 2 1 -
1  cosh (w2b) kw2  cosh(w2b)

2

00
S sinh 11. (b - y)]

ak 2 cosh( ) cos (A. x)
= j,2 1,2

00

2 f2 al (-1)

= 2 Y1 i

Q2 cos (s x) exp (-oy t) +
* - -i --- 12 abk

2 2

S1
• n,1 n,2.S2 + 62 n2, + 62

n 1 =  1 n, . m n, 2 m

* cos (AnX) cos (6my) exp (-aot) (3.53)

where

a

,j- .f. (E) cos (Ahi) d (3.54)

0

2 _ 2 2 2 2 2r n (2m- 1)
02  =W 2 + + = w2 + [ - + (3.55)

2 2 n m . 2 a4 2

and w. , f , Ti, A , 6 , and Y. are defined by Eqs. (3.9), (3.16),

(3.17), (3.18), (3.50), and (3.51), respectively.

Temperature variations on the skin are shown for this case in

Fig. 3.13. These results exhibit the same basic characteristics as

do those for the one-dimensional case; i.e., most of the changes in

temperature occur during the first 5-20 minutes. from the onset of a

change in level of activity.
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100

90-
t= O
t = 5 sec

o t = 30 sec
S8t = 1 min

t = 20 min (-,,.a)

70

60
0 0.2 0.4 0.6 0.8 1.0

x /a

Figure 3.13 Transient temperature distribution on the skin of the
combined tissue for the two-dimensional rectangular
model. Step change assumed from 290 Btu/hr (85 w) to
2600 Btu/hr (760 w), 3 = 0.1 and constant temperature
at inner core.
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Examination of the time dependent exponent in Eq. (3.49) leads

to the following two conclusions:

(1) The exponent is strongly dominated by the separation coef-

ficient Xn rather than by the blood flow term. This becomes

even more noticeable for low blood flow rates. The effect

of the blood can, in any case, be neglected for n > 2.

(2) Time constants (transients) appear to be in the range of

5-20 minutes. This observation is supported by experimen-

tal evidence and partially validates the analysis.

Extension of the transient solutions outlined in this section

to account for the actual changes occurring in the tissue will have

to be delayed until more reliable experimental data become available.

This extension, however, appears to be possible by using Duhamel's

method [631.

3.7 TRANSIENT STATE, CYLINDRICAL COORDINATES

As a result of the preceding analysis, it was felt that an ex-

tensive solution of the transient problem in cylindrical coordinates,

i.e., variable flux at the skin, could be neglected at present; for,

the small amount of additional information obtained from such a solu-

tion would not justify the effort required. Consequently, only the

case with uniform flux at the skin was studied as presented below.

l l - r r i - w2 +Q (3.56a)

R-< R ,r ,_ 0 < t
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with the boundary and initial conditions,

at r = R , 0 =0 (3.56b)

F
atae 2

at r = R2 ' r k- (3.56c)

2 (W r) F (w r)Q1 01 10l 1at t < 0 ,0 = - 1 - (3.56d)
w2 kw

Using the same technique as for the rectangular case, the fol-

lowing solution was obtained

(w2r) F2 0(w2r)
T(r,t) Q2{ - 2(2j I0

w2 (w2 R )  kw 2  (w2 R )

Q2 F2

CO 2 2 1n2 n 2 2 onR)
T E2 E 1 2 E1

Yk2( R ) Y- (vR2 )
n 1 o n 1 n 2

2
Y1 ()nR2)( nr) exp (-0:2 t) (3.57)

where

Xn (-nr) = J0 (Jr)Y (pnR 1 ) - J ( R )Y (pr) (3.58)

and Pn are the roots of

Jo (nR )Y (pnR) - Jl (pn R2 )Yo (pnR) = 0 (3.59)

2 2 2
S= ~n + w. (3.60)

Ji and Yi are Bessel functions of the first and second kind, respec-

tively, of order i.
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No numerical solutions were obtained for this case because of

the appearance of the combination of Bessel functions in the time

dependent series in Eq. (3.57). These functions reach high numeri-

cal values at relatively small arguments and, therefore, exceed the

calculating capacity of the computer. However, the first six roots

of Eq. (3.59) were computed using Newton-Raphson's method as a func-

tion of the ratio R2/R1 and are presented in TABLE 3.2. As this ra-

tio approaches unity (rectangular model), the roots approach the lim-

iting value for the rectangular case; i.e., n +n 6 , as was to be
n n

expected.

3.8 COMPARISON OF STEADY STATE SOLUTIONS FOR RECTANGULAR AND CYLIN-

DRICAL COORDINATES

As was noted above, the human body can be more closely approxi-

mated by cylinders rather than by rectangular slabs. According to

Wissler [18], the outside radii of these cylinders vary from 0.15

ft for the arm to about 0.43 ft for the trunk. Unfortunately, the

expressions obtained for the cylindrical coordinates are more diffi-

cult for numerical evaluation because of the presence of the combi-

nation of modified Bessel function in the solution for the cylindri-

cal case, Eqs. (3.35) and (3.36). This combination, when programmed

on a digital computer, caused an overflow after the first few terms

of the series and rendered the numerical results inaccurate.

A comparison of the simpler, rectangular and the cylindrical

cases revealed that the temperature distributions obtained for the

two cases do not differ significantly. This fact became even more

apparent as R1 increased. For R 1 0.20 ft, the results obtained
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TABLE 3.2

FIRST SIX ROOTS OF EQ. (3.59) AS A FUNCTION OF THE RATIO

OF THE OUTER TO INNER RADII OF THE CYLINDRICAL MODEL, R2/R 1 .

THE RIGHTMOST COLUMN GIVES THE ASYMPTOTIC VALUES

([(2n - 1)JT]/2b, RECTANGULAR MODEL) AS R1 - AND R2 /R 1 + 1.

R2 /Ri 2.46 1.73 1.37 1.24 1.18 1.15 1

n R (ft) 0.05 0.10 0.20 0.30 0.40 0.50

1 17.83 19.18 20.16 20.55 20.76 20.90 21.49

2 63.29 63.74 64.04 64.16 64.23 64.27 64.46

3 106.74 107.01 107.19 107.26 107.30 107.33 107.44

4 149.91 150.11 150.24 150.29 150.32 150.34 150.42

5 193.00 193.15 193.24 193.30 193.32 193.33 193.39

6 236.05 236.17 236.25 236.29 236.30 236.32 236.37
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for the rectangular model were adequate for any practical purpose.

Figures 3.14, 3.15, 3.16, and 3.17 demonstrate this finding for uni-

form and variable heat fluxes at the skin (see APPENDIX E).

A partial explanation to this similarity of the solutions can

be given as follows. If the argument of the modified Bessel function

is greater than 10, which is mostly the case here (wRI > 10), the

following expressions can be used to approximate the modified Bessel

functions of the first and second kind [64],

0.3989 exp (z) k[ bk
I2 (z) 1 + (-1) - + --

k z1/2 1 28z 2,

z 128z2

+ 0243 (3.62)

where ak, bk, and ck are constants and k = 0 or 1. When these expres-

sions are substituted into Eq. (3.37), an essentially exponential ex-

pression results. This expression corresponds to the hyperbolic func-

tions that appear in the solution for the rectangular case.

It should be noted that the above comparison is valid for the

cylindrical case with the cooling tubes running perpendicular to the

axis of the cylinder, Fig. 3.2. The reason is the similarity of the

resulting rectangular geometry.
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99.7 OF

Eq. (E.2), cylindrical
---------- 99
Eq. (C.2), rectangular

S- 97. 5 -97 \
97.5

95 9

96

94.92
(94.33)

Figure 3.14 Comparison between the steady state, two-dimensional
solutions for rectangular and cylindrical models
(tubes running perpendicular to the axis of the cy-
linder, R1 = 0.15 ft, V and b are constant).
Qm = 290 Btu/hr (85), B = 0.1 and constant tempera-
ture at inner core.
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1.0

0.8-

0.6-
r
b Qm = 290 Btu/hr

0.4 - Qm = 2600 Btu/hr

R1, ft

co

O.2 - 0.5
0;05

92 94 96 98 100 102
T 0 F

Figure 3.15 Comparison between steady state, one-dimensional solutions
obtained for the rectangular and cylindrical models (V and
b are constant). Constant temperature at inner core.
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1.0

0.8

0.6 Q- m = 290 Btu /hr

r Qm= 2600 Btu/hr

b R, 7ft

0.4- o -
0.5

0.05
0.2- -

92 94 96 98 100 102
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Figure 3.16 Comparison between steady state, one-dimensional solutions
obtained for the rectangular and cylindrical models (V and
A are constant). Constant temperature at inner core.
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1.0 I I

0.8

0.6 - Qm = 290 Btu/hr
Qm = 2600 Btu /hr

- Rl, ft

0.4 - 0 .

0.5
- 0.05

0.2-

92 94 96 98 100 102

T,0 F

Figure 3.17 Comparison between steady state, one-dimensional solutions
obtained for the rectangular and 'cylindrical models (A and
b are constant). Constant temperature at inner core.
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3.9 DIMENSIONLESS PARAMETERS ASSOCIATED WITH THE THERMAL BEHAVIOR

OF LIVING BIOLOGICAL TISSUE

It is always desirable, from an engineering viewpoint, to have

appropriate dimensionless parameters for the description of any physi-

cal phenomena. The best method for obtaining these parameters is

via an analytical model.

Consider a one-dimensional, steady state case in rectangular

coordinates. The analytical expressions for the temperature distri-

butions in the tissue can be obtained from Eqs. (C.2) and (C.4) to

yield, for constant temperature at the inner core,

T(y) = T + [i cosh (wy) F sinh [w(b - y)] (3.63)
1 w2 cosh (wb) w cosh (wb)

w

and, for a constant heat flux at the inner core,

T(y) = T + -- + F cosh (wy)
I 2 kw sinh (wb)w

- F cosh [w(b - y)] 1  (3.64)

Figures 3.18 and 3.19 show results obtained for Eqs. (3.63) and

(3.64), respectively, for both low (290 Btu/hr, 85 W) and high (2600

Btu/hr, 760 W) metabolic rates.

As was noted above, a maximum temperature was found to occur

in the combined tissue rather than in the inner core (Fig. 3.18).

In order to obtain the location of these maxima, Eqs. (3.63)

and (3.64) were differentiated and equated with zero to obtain [65],
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1.0 I I I I

0.9
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0.7 m= 290 Btu/hr
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Figure 3.18 Steady state temperature distributions in the combined
tissue for the one-dimensional rectangular model. Con-
stant temperature at inner core.
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1.0
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0.6
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0.2 - 2600 Btu /hr
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Figure 3.19 Steady state temperature distributions in the combined
tissue for the one-dimensional rectangular model. Con-
stant flux at inner core.
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tan[ ] ch (wb) (3.65)
tanh wb) Q'Ab 1 + sinh (wb)

___ - + sinh (wb)
Q wb

tanh (wb) sinh (wb) (3.66)
] -1 + cosh (wb)

Qm

No maximum temperature was found to occur inside the tissue for

the case with a specified flux at the inner core, Eqs. (3.64) and

(3.66). This result is to be expected since, by imposing a heat flux

from the inner core into the combined tissue, the temperature gradi-

ents must sustain heat flow toward the skin only. Equation (3.65),

however, was solved for the y/b values for which the maximum tempera-

ture occurs as a function of the parameters present in it. The lo-

cation of the maximum was found to be independent of inner body tem-

perature. Results are shown in Fig. 3.20.

Based on the preceding analysis, three dimensionless parameters,

which have significant effects on the steady state heat transfer in

the living tissue, emerged. These are:

(1) wb = (WbCb/k)/2 b--ratio of heat transported by the blood

stream to the heat transferred by conduction through the

tissue.

(2) Q'Ab/Qm--ratio of rate of heat generated in the tissue to

the total metabolic heat generation rate.

(3) (Q'Ab/Q)[(WbCb /k)-1/2b- ]--the quotient of the first and

second groups which contains most of the physical and physio-

logical properties describing the thermal condition of the

human body. From the scant physiological data available

[59], this third group appeared to be almost constant at

0.2 for a wide range of metabolic rates. If this value

d-7 C*
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1.00
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Figure 3.20 Location of the maximum temperature in the combined
tissue for the one-dimensional rectangular model.
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could be verified experimentally, which is beyond the scope

of this work, a very strong physiological tool would become

available, which would facilitate the calculation of quan-

tities such as blood perfusion or heat generation rates

that are very difficult to measure.

TABLE 3.3 summarizes the physiological quantities and the cor-

responding values of the above parameters.

No additional information was obtained from studying the corre-

sponding cylindrical case. It is, however, presented below for com-

pleteness.

The temperature distribution in the cylindrical shell, which

is uniformly cooled at the skin and has a constant temperature at

the inner core, is

S(wr) F o(wr)
T(r) = T + -- - (3.67)

1 w2 (wR ) kw 1 (wR )

with the resulting expression for the location of the maximum tempera-

tures

1 [(WR)I AI I (wR2) - o (wR1 )

K (wR) r] - A 1K (wR2 ) + K (wR1 ) (3.68)

where

Q AR 1
A (3.69)1 Qm wR1



TABLE 3.3

PHYSIOLOGICAL QUANTITIES AND THE CORRESPONDING DIMENSIONLESS PARAMETERS.

cb = 1, Btu/lb-oF (4187 J/kg-OC), k = 0.311 Btu/ft-hr-OF (0.540 w/m-°C), b = 0.0731ft (0.0223 m),

AND A = 15.4 ft2 (1.43 m 2 )

Q Q' b  (W Cb /k) /2b Q'Ab/Q (Q'Ab/Q )(1/wb)

Btu/hr w Btu/hr-ft w/m S  lb/hr-ft kg/hr-m

290 85 64 660 94 1.,510 1.273 2.484 0.195

2,600 760 2,090 21,600 1,120 18,000 4.394 9.049 0.206

A
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In the cylindrical model, two groups appear, wR1 and wR , repre-

senting ratios of heat transported by blood to that conducted through

the tissue.

For the transient case, an additional dimensionless parameter

appears [from Eq. (3.49)],

2 2 k b b n7
a[w + [ It - - + t (3.70)

n pcp k a

Equation (3.70) may be resolved into two expressions after multiply-

ing and dividing it by the temperature of the inner core, T1 . The

results are the following two dimensionless groups:

(1) (WbCbT)/(pc pT1 /t*)--ratio of rate of heat transported by

the blood stream to rate of energy stored in the tissue.

(2) (kT /a2 )/(pc T /t* )- - ratio of rate of heat conducted
I p 1.

through the tissue to rate of energy stored in it.

In the above two expressions,t* is some characteristic time.

TABLE 3.4 gives values of the two expressions in the brackets

of Eq. (3.70). It clearly demonstrates the dominance of the geomet-

rical separation coefficient relative to the term containing blood

flow for n > 2.

211<a;



TABLE 3.4

COMPARISON OF MAGNITUDES OF THE TER-S IN EQ. (3.70).

c = 1 Btu/lb-0 F (4187 J/kg-OC), k = 0.311 Btu/hr-ft-OF

(0.540 w/m-OC), AND a = 0.032 ft (0.00975 m)

w 85 760

Btu/hr 290 2,600

1/m 3,230 38,750
w, c, /k

1/ft 300 3,600

n 1 2

1/m 103,200 427,000
(n7r/a)0

1/ft 9,600 39,700
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4. EXPERIMENTS

4.1 OBJECTIVES

The experimental phase of this work was undertaken with the

following objectives:

(1) Exploration of the feasibility and operating characteris-

tics of independently cooling separate regions of the body

regional cooling). This part was to determine preferable

water inlet temperatures, amount of heat removed at each

region and the order of cooling or warming preferences at

different metabolic rates. The subjects' own sense of

comfort was the criterion for determining these data.

(2) Partial validation of the analytical predictions. This

was planned to be achieved by measuring skin temperatures

between two adjacent cooling tubes. No penetration of the

skin was contemplated.

4.2 DESCRIPTION OF THE EXPERIMENTAL SETUPS

4.2.1 Cooling Suit

A water cooled suit was constructed for the purpose of

testing the characteristics of the proposed differential scheme of

cooling the body. The suit consisted of sixteen individual pads

made of 3/32 in.I.D. by 5/32 in. O.D. Tygon tubes running parallel

5/8 in. apart. The spacings between the tubes were maintained by the

use of Mylar strips and heavy cotton thread. This assembly was

stitched onto cotton fabric pieces, cut to fit the dimensions of the

..... i. 3<
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various parts of the body. "Velcro" strips were glued to the fabric

to facilitate quick fastening and to accommodate subjects of differ-

ent sizes (Fig. 4.1).

The cooling pads covered the head (2)t, front and back, upper and

lower torso (4), upper and lower, right and left arms (4), right and

left thighs (4), and right and left lower legs (2). The face, neck,

hands and feet were not covered with cooling tubes. TABLE 4.1 gives

pertinent dimensions of the cooling pads and the whole suit.

All the pads, excluding the one for the head, were stitched onto

the inside of a No. 44 long sleeve, Towncraft, Raschel knit, men's ther-

mal union underwear garment. The cooling hood was made of a snow suit

hood with the cooling tubes stitched onto the inside. The 3/8 in. O.D.

main supply Tygon tubes were stitched on the outside of the garment.

The body was divided into six separate regions:

(1) Head,

(2) Upper torso,

(3) Lower torso,

(4) Arms,

(5) Thighs, and

(6) Lower legs.

These regions were supplied with water from cold and hot headers.

Inlet pressure of the water was maintained at 20 psig by pressure regu-

lators. Before entering the cooling pads, the two streams were mixed,

thus allowing for continuous regulation of water inlet temperature.

Water inlet temperatures were measured by means of No. 30 gage copper-

i'Numbers in parentheses here represent number of pads in region.

214<
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TABLE 4.1a

DATA ON THE COOLING GARMENT

Pad Number Number of Area Covered Total Area Percent
of Pads Tube Rows by Pad Covered by Pads Area

in Pad . 2  2  in.2  2 Coveredin. cm in. cm

Head 2 12 65 419 130 838 9.6

Front and Back, Upper 4 14 111 716 444 2864 33.0
and Lower Torso

Upper Arms 2 11 62 400 124 800 9.2

Lower Arms 2 12 60 387. 120 774 8.9

Upper Thighs 2 7 83 535 166 1070 12.3

Lower Thighs 2 10 96 619 192 1238 14.2

Lower Legs 2 16 86 555 172 1110 12.8

Total 16 -- -- -- 1348 8694 100



TABLE 4.1b

DATA ON THE COOLING GARMENT

Cooling Garment Insulating Suit Cooling Hood Insulating Hood Total

kg lb kg lb kg lb kg lb kg lb

Weight, dry 4.41 9.72 0.80 1.61 0.25 0.55 0.31 0.68 5.77 12.56

Weight, wet 4.88 10.77 -- -- 0.30 0.66 -- -- 6.29 19.33



80

constantan thermocouples using a Leeds and Northrup millivolt potenti-

ometer. At a later stage, the thermocouples were replaced by inter-

changeable, multipurpose No. 401 thermistors using a Yellow Springs

Instrument Co. Tele-Thermometer.

The difference between outlet and inlet temperature of each in-

dividual pad was measured by thermopiles consisting of five No. 30

gage copper-constantan thermocouples. These were connected in series

to increase the sensitivity of the measurement. The thermopiles were

glued to special Plexiglas connectors using 910 Eastman adhesive.

The temperatures were continuously recorded on a Leeds and Northrup

Speedomax Type G recording potentiometer. Water flow rates of each

of the regions were measured by a Fisher and Porter rotameter. All

the thermocouple assemblies and thermistors were precalibrated in a

constant temperature bath against a precision platinum resistance

thermometer, Figure 4.2 shows a schematic of the cooling pads and

the control, supply, and measuring systems. Figure 4.3 shows the

water supply system, the rotameter, and the potentiometer recorder.

On top of the underwear garment, the subjects donned an insulat-

ing suit which thermally isolated them from the environment. A heavily

furred hood was used for the same purpose on the head. On the feet,

all test subjects wore tennis shoes.

An A. R. Young treadmill was used for the walking sessions.

The speed of the treadmill belt was controlled to correspond to the

desired level of activity and was timed by a stop watch.

For metabolic measurements, expired air samples were taken with

metalized Douglass bags [66]. The bags were placed inside a tightly

<
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Figure 4.2 Schematic diagram of the cooling garment and the

control, supply and measuring systems.
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Figure 4.3 View of the water suppy system, rotameter and potenti-

ometer recorder used for the experiments with the

cooling suit.
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sealed Plexiglas chamber that was under vacuum of about 5 mm Hg [67].

Air was inhaled and exhaled through a mouth piece while the nostrils

were blocked with a noseclip. Two sets of one-way rubber valves in-

sured the separation of the two streams. The expired air was then di-

rected through a 1 in. I.D. rubber hose into a mixing chamber. One

minute sampling was achieved by opening a one-way stopcock valve thus

exposing a previously evacuated metalized bag to the exhaled air.

Air volumetric flow rates were measured by means of a Parkinson-

Cowan dry gas meter. Inlet and outlet air temperatures were measured

by two interchangeable, multipurpose, No. 401 Yellow Springs thermi-

stors using the company's Tele-Thermometer. Figure 4.4 shows part of

the treadmill and the system used for collecting air samples. Air

samples were analyzed for CO2 and 02 content. A Godart-Mijnhardt CO2

thermal conductivity meter, Pulmo Analysor Type 44-A-2 and a Beckmann

Paramagnetic 02 analyzer, Model C2, were used. The results of this

analysis together with the corresponding air flow rates were then used

to evaluate the energy expenditure [681.

The temperature of the ear canal was taken as a measure of deep

body temperature. This was done by an ear thermistor No. 510 and a

Yellow Springs Instrument Co. Tele-Thermometer. The thermistor was in-

serted approximately one-half inch into the ear canal and was held in

place by a specially prepared ear plug made of medical grade silicone

rubber. The outside ear was covered by a piece of polyurethane foam

to exclude possible effects of the cooling tubes. The reasons for

measuring the temperature of the ear canal rather than the more com-

monly used rectal temperature were twofold: first, it was more conveni-

ent for walking; and second, it gave a closer indication to the

221<
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Figure 4.4 View of the treadmill, Tele-Thermometer and system for

collecting samples for determining metabolic rates.
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temperature regulated by the body, i.e., the temperature of the hypo-

thalamus. Figure 4.5 shows a general view of the experimental set-up

with a test subject dressed up with the cooling and insulating suits

walking on the treadmill. Ear canal thermistor is not shown connected

in this picture.

A Buffalo special physiological beam scale was used to weigh the

subjects before and after the experiments. The capacity of this scale

is 125 kg and the sensitivity is +0.25 gr.

4.2.2 Individual Cooling Pads',

Three different individual cooling pads were constructed

for the purpose of partially validating the analytical predictions.

These pads were designed to fit over the thigh of a test subject.

They were all made of gum rubber with parallel Tygon tubing glued onto

one side using RTV glue. TABLE 4.2 gives pertinent data on the indi-

vidual pads.

Number 30 gage copper-constantan thermocouples were used to meas-

ure cooling water temperatures and skin temperatures between two ad-

jacent tubes. The thermocouples were equally spaced along a diagonal

between the tubes and were pressed against the skin to insure good

thermal contact. Figure 4.6 illustrates one of the cooling pads and

the thermocouples.

The cooling pads were supplied with water by the same system as

described in the preceding section. Water supply temperature and the

difference between water outlet and inlet temperatures were

tThis set-up was built and these experiments were performed by Mr. R. J.
Leo under the supervision of the author.

223<



Figure 4.5 General view of the set-up used for the experiments with

the cooling suit. A test subject is shown dressed up in
the cooling suit walking on the treadmill. No tennis
shoes are shown in this picture and the ear canal thermi-

stor is not connected. I
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TABLE 4.2

DATA ON THE INDIVIDUAL COOLING PADS

Outside Spacing Number Total Area Approximate Percent

Diameter of Tubes of Rows Length Covered Contact of Area

of Tubes of Tubes of Tubes by Pad Area with in Contact

the Skin with Tubes

S2 2 2 2
in. cm in. cm in. cm in. cm in. cm

Pad No. 1 5/32 0.397 1 2.5 4  10 163 414 140 910 22.9 148 16.4

Pad No. 2 5/32 0.397 5/8 1.59 14 228 580 132 852 32.1 207 24.3

Pad No. 3 7/32 0.556 1 2.54 10 163 414 145 937 28.5 184 19.7
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Figure 4.6 View of one of the individual pads.
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continuously recorded by a Brush Mark 280 Recorder. Thermopiles con-

sisting of five copper-constantan thermocouples connected in series and

a Brush pre-amplifier were used to increase the sensitivity of the

reading of the difference between outlet and inlet water temperatures.

For metabolic measurements,the same system as described in the

preceding section was used. Ear canal temperatures were taken using the

same technique as was used for the experiments with the cooling suit.

A Leeds and Northrup Speedomax W, 12-point potentiometer-recorder

was used for continuously monitoring and recording the temperature of

the cooling water and the skin temperatures between the adjacent tubes.

During the experiments the subject pedalled a Monark bicycle ergome-

ter at a constant preset speed and load.

4.3 EXPERIMENTS WITH THE COOLING SUIT

4.3.1 Activity Schedules

Five different schedules of activity were used for all the

test subjects. The schedules consisted of alternate periods of stand-

ing and level walking on the treadmill with or without the cooling suit.

The various levels of activity were chosen to cover a variety of differ-

ent activity loads. The steady state and, to some extent, transient

state characteristics of the cooling suit were studied under those con-

ditions. Each of the schedules started with the subject standing still

'for at least 45 minutes. During this period water inlet temperatures

were adjusted to correspond to the subject's own sense of comfort. The

duration of each of the standing and walking sessions (except the second

part of Schedule V) was 45 minutes. It was assumed that after 45 minutes

-,0 7 <
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from the onset of a change in activity level the subjects reached a

thermal quasi-steady state. Figure 4.7 illustrates schematically the

details of the five activity schedules.

Schedule I, with the lowest activity levels, consisted of four

step changes: standing; walking at 2 mph; standing; walking at 2.5

mph; and standing. Two mph was the slowest speed that could be ob-

tained from the treadmill with the subject on it. Once the subject's

comfort was achieved while standing, no deliberate changes in water

inlet temperatures were made. The small changes in water inlet tem-

peratures were due to the instability of the water supply system.

The purpose for maintaining constant temperature was to test the cool-

ing capacity of the suit at higher metabolic rates while operating at

the same temperature levels which were considered comfortable at the

lower metabolic rate.

Schedule II was designed to compare the effect of changing the

water inlet temperature at the same activity level. It consisted of

two identical, periodic step changes: standing; walking at 3 mph;

standing; and again walking at 3 mph and standing. During the first

walking session, no adjustments in water inlet temperatures were per-

mitted. During the second cycle, however, the water temperatures

were adjusted to correspond to the subject's comfort.

Schedule III consisted of four step changes: standing; walking at

2 mph; walking at 4 mph; walking at 2 mph; and standing. The purpose

of this schedule of activities was to study the characteristics of the

suit at a moderately high activity level. (Approximately 1650 Btu/hr,

482 w ) The intermediate 2 mph walking sessions were used for two
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Figure 4.7 Activity schedules used for the experiments with the
cooling suit.
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reasons: first, to allow a gradual change to the high activity level

and, second, to some extent, toacquaint the subjects with the relatively

high speed that was also included in the last two schedules. Adjust-

ments of water inlet temperatures were permitted throughout the entire

duration of the experiment.

Schedule IV was almost identical to Schedule III, but it included

an additional walking session at 3 mph immediately preceding the 4 mph

walking period. This was done to study the effect of a more gradual

change in activity level.

Schedule V was used to study two features: first, to examine the

performance of the suit at a step from standing to the moderately high

activity level without any intermediate changes and, second, to deter-

mine the characteristics of the suit with thermal transient changes at

the same activity levels. This schedule consisted of the following

step changes: standing; walking at 4 mph and standing followed by four

short identical periodic sessions of walking at 4 mph and standing.

The duration of each of the short walking and standing sessions was 15

minutes. Readjustments in water inlet temperatures were permitted

throughout this entire schedule.

4.3.2 Test Subjects

Five male students, ranging in age from 18 to 29 years,

volunteered to serve as test subjects. They were all required to pass

a thorough physical examination. They represented a variety of physi-

cal fitnesses ranging from poor to athletic. There were limits on the

height and weight of the subjects dictated by the size of the cooling

30<
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suit. The physical characteristics of the test subjects are summarized

in TABLE 4.3. Surface areas were determined from the Dubois height/

weight formula [69]t. All but one subject completed all five experi-

ments. Subject PF did not complete Schedule V due to a stiff thigh mus-

cle.

4.3.3 Experimental Procedure

All the experiments were performed at the Laboratory for

Ergonomics Research, University of Illinois at Urbana-Champaign. This

laboratory is permanently air conditioned at about 230C and 60 percent

relative humidity. The experiments were all run during July and August

1970 and were scheduled at the subject's convenience. The subjects

performed at least once a week and usually more often.

A total of 29 experiments were run. Of these, 24 were performed

with the cooling suit. Five pilot runs were performed by subject SKB

repeating the regular activity schedules without the suit. During the

pilot runs subject SKB wore tennis shoes, shorts and a light T shirt.

All subjects started with Schedule I and, in order, completed the other

schedules sequentially. The subjects were permitted to listen to the

radio, and read while standing, but no eating, drinking or smoking was

allowed during the experiments.

At the beginning and end of each experiment the subjects were

weighed, and their oral temperature and blood pressure were taken. The

last two measurements were taken only as precautionary measures against

any acute effects of the experiment on the subject. Also the barometric

tSurface area [cm2 ] = 71.84 W[kg] 0 4 2 5  h[cm]o 7 2 5

Z3.1W~g h~m
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TABLE 4.3

CHARACTERISTICS OF THE TEST SUBJECTS

Subject Age Height Weight Surface Area Percent Area

2 2 Covered by
cm in. kg lb m ft Cooling Pads

A. SGP 20 173 68 65.7 144.8 1.78 19.2 48.8

B. SKB 22 170 67 61.1 134.7 1.71 18.4 50.8

C. HNT 27 170 67 64.2 141.5 1.74 18.7 50.0

D. RET 18 169 66.5 64.2 141.5 1.74 18.7 50.0

E. PF 29 161 63.5 55.8 123.0 1.58 17.0 55.0

Means 23.2 169 66.4 62,2 137.1 1.71 18.4 50.9

Z32<
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pressure was measured, During the experiments the following data were

collected: ear canal temperatures, water inlet temperatures, differences

between water inlet and outlet temperatures at each of the six regions

of the body, water flow rates, respiratory volumetric rates and tempera-

tures of expired air. During the runs of Schedule V and during the pilot

runs without the suit, pulse rates were also taken. All measurements

were taken at the end of each activity in the schedule and were assumed

to represent the quasi-steady state values.

After the preliminary measurements, the subjects donned the cooling

garment. Each of the cooling pads was fastened in place to insure good

thermal contact. The thermally insulated suit was then put over the

cooling garment. Next, the ear thermistor was inserted into the ear and

the ear was covered to exclude possible thermal effects of the cooling

hood. Finally, the water inlet and outlet tubes were connected, flow

was started and the leads of the thermopiles were connected to the po-

tentiometer recorder, Figures 4.8 through 4.11 show one of the subjects

at various stages of dressing.

The subjects stood on a bench and water inlet temperatures were ad-

justed to conform to their sense of comfort. When a thermal quasi-steady

statet was reached, as indicated by the potentiometer recorder, the tread-

mill was started, With the support of the supervisor of the experiment,

the subjects stepped on the moving belt and started to walk. The speed

of the treadmill was then quickly adjusted to the desired level. Step

changes from walking to standing were done in the same manner. Figure 4.12

shows one of the subjects while walking and breathing through the system

tQuasi-steady state was defined as that state wherein no significant
changes in the difference in outlet and inlet water teiiperatures was
noticeable.
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Figure 4.9 Side view of the cooling garment.
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Figure 4.10 Back view of the cooling garment.
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Figure 4.11 Front view of a test subject dressed up in the
cooling and insulating garments
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Figure 4.12 A test subject shown walking on the treadmill and
breathing through the system for measuring metabolic
rates. No tennis shoes are shown in the picture.
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for measuring the metabolic rate.

4.3.4 Measured, Recorded and Calculated Quantities

The following quantities were measured, recorded, or cal-

culated from other measured data:

(1) Total metabolic rate. This was calculated from volumetric

flow rate of the expired air and the oxygen content obtained

from the gas analysis. The caloric value of oxygen was as-

sumed at 5.0 kcal/lit [701. This value, although slightly

high, conformed well with the respiratory quotients found in

most of the runs. HIaximum deviation from the actual caloric

value was assumed to be about 4 percent.

(2) Rate of heat removed by the suit at each region. This was

taken as the product of the difference between water inlet

and outlet temperatures and water flow rate. Specific heat

of water was assumed to be unity.

(3) Rate of heat lost by respiration. Flow rato, temperature

and enthalpy of the expired air, assuming it to be saturated,

were used for calculating this quantity.

(i) Weight loss during the experiment. Taken as the difference

between the initial and final weights of the subject.

(5) Ear canal temperature. Measured by an ear thermistor and

was assumed to simulate closely the temperature of the body

that is regulated by the central temperature control mechanism.

(6) Water inlet temperatures to each of the regions at the various

activity levels. These were measured by thermistors that were

Z <
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inserted into the water streams.

(7) Order of preferred changes in water inlet temperatures to

the different regions. This was recorded for the purpose of

identifying those regions of the body that require changes

in water temperature and the preferred order of the changes

as a function of activity level.

(8) Comfort vote. Based on the subject's own evaluation of his

state of comfort. Only three choices were suggested: slightly

cold, thermally comfortable, too warm.

(9) Pulse rate. This was measured only during the experiments of

Schedule V and the pilot runs without the suit. The pulse

rate was assumed to be an index of the metabolic and cardiac

costs of the physical work. Pulse rate was not taken during

the experiments of the other schedules because these schedules

were considered to represent quasi-steady states.

4.4 EXPERIMENTS WITH THE INDIVIDUAL PADS

Three identical tests were conducted with the individual cooling

pads. These tests were designed to compare the steady state temperature

distribution on the skin for different cooling pads at the same level of

activity. All experiments consisted of riding the bicycle ergometer at

a constant speed and load for about two hours, corresponding to a total

metabolic rate of about 1200 Btu/hr (352 w).

One male student volunteered to serve as a test subject for the ex-

periments with the individual cooling pads. The physical characteristics

of this subject are summarized in TABLE 4.4. At the beginning and end of

Z40<
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TABLE 4.4 CHARACTERISTICS OF SUBJECT TEK

Subject Age Height Weight Surface Area
Suject Age c in. kg. lb. m ft 2

TEK 19 189 74.5 79.7 175.5 2.02 21.7

each of the experiments, the same procedure as was used for the ex-

periments with the cooling suit was repeated (weighings measuring

blood pressure, etc.). Then the cooling pad was put in place on the

thigh of the right leg. The water supply tubes were then connected,

flow was started and the leads of the various measuring devices were

connected to the appropriate recording instruments.

The subject started to bicycle at the preset speed and load and

continued to do so until a steady state was reached. The steady state

was obtained when no changes could be noticed in any of the measured

parameters.

Figure 4.13 gives a general view of the set-up used for the ex-

periments with the individual cooling pads with a test subject shown

pedalling the bicycle ergometer.

Z41<
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I

Figure 4.13 General view of the set-up used for the experiments
with the individual cooling pads. A test subject is
shown pedalling the bicycle ergometer.
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5. DISCUSSION

5.1 EXPERIMENTS WITH THE COOLING SUIT

In order to present the large amount of data that was gathered

during the experiments, most of the results of each schedule were

averaged and are presented in this form. Wherever it was feasible,

entire ranges of individual variations were also shown. All the

data, excluding the weight losses, were measured or calculated at

the end of each of the step changes in activity level.

Figures 5.1 through 5.5 show mean values of metabolic rates

and of heat removed by the suit and by respiration during the vari-

ous schedules of activity. Also shown are the ranges of metabolic

rates included in the mean values. It is seen that during the stand-

ing sessions of Schedules I through IV and the first part of Sched-

ule V, most of the heat produced in the body was removed by the cool-

ing suit. In many cases the amount of heat removed by the suit even

exceeded slightly the total metabolic rate. This phenomenon is be-

lieved to be due to possible thermal transients indicated by a de-

crease in "deep body" temperature following a change in activity from

walking to standing (Fig. 5.6) and cumulative measurement errors.

During all of the walking sessions the relative amount of heat

removed by the suit dropped significantly. At best, only about 70

percent of the total metabolic rate was removed by the suit during

the walking sessions; this value was usually closer to 50 percent.

Possible explanations to account for the portion of the total meta-

bolic rate that was not removed by the cooling suit are the following:

243<
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0 Total Metabolic Rate
I Heat Removed by Suit
O Heat Removed by Respiration
I Range of Metabolic Rate
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Figure 5.1 Mean values of metabolic rates and of the amounts
of heat removed by the cooling suit and by respiration
for Schedule I.
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o Total Metabolic Rate
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Figure 5.2 Mean values of metabolic rates and of the amounts
of heat removed by the cooling suit and by respiration
for Schedule II.
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0 Total Metabolic Rate
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Figure 5.3 Mean values of metabolic rates and of the amounts

of heat removed by the cooling suit and by respiration
for Schedule III.
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o Total Metabolic Rate
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Figure 5.4 Mean values of metabolic rates and of the amounts
of heat removed by the cooling suit and by respiration
for Schedule IV.
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Figure 5.5 Mean values of metabolic rates and of the amounts
of heat removed by the cooling suit and by respiration
for Schedule V.
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(1) Thermal transient states with heat still being stored in-

side the body. (Increase in "deep body" temperatures,

Fig. 5.6.)

(2) Heat dissipated to the environment from the uncovered sur-

faces, e.g., face, forehead and hands.

(3) Heat removed by the respiratory system.

(4) Heat removed by perspiration aided by air that was pumped

under the somewhat loose thermal insulating suit.

(5) Work done by the muscles.

(6) Measurement errors and inaccuracies.

(7) Heat lost to the environment through the clothing assembly.

From these, only the contribution of item 3, i.e., respiration, was

estimated. It was calculated that the amount of heat dissipated by the

respiratory system ranged from 7.3 percent to 14.8 percent of the total

metabolic rate. These values are consistent with values reported by

Bazett [551. With the increase in metabolic rate the amount of heat

carried away by respiration also increased. However, the relative

amount of heat removed by the exhaled air decreased. The remaining un-

accounted-for portion of the metabolic rate is assumed to have been

removed by the other channels that were mentioned above.

It was found that, from the comfort standpoint, the present cool-

ing system was not sufficient to accommodate for metabolic rates in

excess of about 1200 Btu/hr (352 w). This finding was manifested by

the consistent comfort votes of "too warm" at the moderately high

activity levels (TABLE 5.1). It is assumed that the insufficieny of

the cooling system was due to two reasons: too small a contact area

t;O <



TABLE 5.1

ORDER OF PREFERRED CHANGES IN WATER INLET

TEMPERATURES AND THE COMFORT VOTE FOR THE VARIOUS ACTIVITIES

Change in Subjects

Water Inlet

Temperature SGP SKB HNT RET PF

SCHEDULE II

1. Upper Torso

Standing to Decrease All over Not Not 2. Lower Legs All over

3 mph the body Recorded -Recorded 3. Thighs the body

4. Lower Torso

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

All over

3 mph to Increase No Not Not the body No

Standing Changes Recorded Recorded but the Changes

lower legs

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

(continued)



TABLE 5.1 continued

Change in Subjects
Water Inlet
Temperature SGP SKB HNT RET PF

SCHEDULE III

Standing to Decrease Not No 1. Legs All over 1. Head
2 mph Recorded Changes 2. Arms the body 2. Upper Torso

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

1. Legs
2 mph 2. Lower Torso 1. Lower Torso

Not All over 1. Headto Decrease 3. Head 2. Lower Legs
Sph Recorded . the body Torso 2. Upper Torso

4mph 4. Armis 3. Upper Torso p
5. Upper Torso

Comfort Vote Too Warm Too Warm Too Warm Too Warm Too Warm

4 mph i. Head No
to Increase Not 1. Upper Torso No . ArmNoto Increase 2. Arms
2 mph Recorded 2. Arms Changes 3. Upper ToChanges

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

2 mph to Not No 1. All over 1. Arms No
Standing Increase Recorded Changes the body 2. Upper Torso Changes

2. Lower Torso 3. Thighs

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

(continued)



TABLE 5.1 continued

Change in Subjects
Water Inlet

Temperature SGP SKB HNT RET PF

SCHEDULE IV

1. Thighs 1. Lower Torso

Standing to No 2. Lower Legs No No
Decrease 2o Arms

2 mph 3. Upper Torso Changes 3. Upper Torso Changes Changes
3. Upper Torso 4. Arms

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

i. Thighs i.Lower Torso 1. Lower Legs
2 mph 1. Lower Torso

h2to Decrease Upper Torso 1. Lower Legs 2. Lower Torso No
to Decrease 2. Lower Legs .

3. Arms 2. Upper Torso 3. Thighs Changes

4. Lower Torso 4. Upper Thighs

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

1. Lower Torso 1. Lower Torso

3 mph 2. Lower Legs 2. Thighs
All over All over

to Decrease 3. Head 3. Lower Legs Head

4 mph the bo4. All over 4. Head

the body 5. Lower Legs

Comfort Vote Too Warm Too Warm Too Warm Too Warm Too Warm

(continued)



TABLE 5.1 continued

Change in Subjects
Water Inlet
Temperature SGP SKB HNT RET PF

SCHEDULE IV
cont.

4 mph i. Upper Torsoto Increase All over 2. Lower Torso No All over No
2 mph the body 3. Arms Changes the body Changes

Comfort Vote Comfortable Comfortable Comfortable Comfortable Comfortable

1. Upper Torso
i. All over

2 mh 2. Lower Torso2 mph to No 3 Arms the body All over No
Standing. Changes 4. Head 2. Lower Torso the body Changes

3. Lower Legs5. Lower Legs

Comfort Vote Slightly Comfortable Comfortable Comfortable Comfortable

(continued)



TABLE 5.1 continued

Change in Subjects
Water Inlet
Temperature SGP SKB HNT RET

SCHEDULE V

i. Upper TorsoStanding to 2. Lower Torso 1. Lower LegsStanding to 2. Lower Torso 2. All over All over All over4 mph Decrease 3. Thighs the body the body the body
(45 min run) 4. Upper Torso the body the body the body

3. Head5. Head

Comfort Vote Too Warm Too Warm Too Warm Too Warm

1. Thighs
4 mph to i. Upper Torso
Standing nrease 2. Arms 2. Upper Torso 1. Lower Torso All over

(45 min run) 3. Thighs 3. Arms 2. Lower Legs the body(45 min run) 3. Thighs 4. Upper Torso
A 4. Upper Torso

Comfort Vote Comfortable Comfortable Comfortable Comfortable

Standing to No No All over No4 mph Decrease
(15 min run) Changes Changes the body Changes

Comfort Vote Comfortable Comfortable Comfortable Comfortable

Rest of
Experiment No No No Alternate
(4 mph and Changes(4 mph and Changes Changes Changes Changes
standing All over

alternately) the Body

Comfort Vote Comfortable Comfortable Comfortable Comfortable
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between the skin and the cooling tubes and too high water inlet tem-

peratures. The actual contact area between the skin and the cooling

tubes was estimated to be about 10 percent of the total skin surface

area. The lowest water inlet temperature that was obtained in most

of the experiments was about 160C. Increasing the contact area be-

tween the skin and the cooling tubes and/or lowering water inlet tem-

peratures should improve the cooling capacity of the suit. This con-

clusion was suggested by the results obtained by Webb and Annis [711,

who also reported experiments with a cooling suit. They estimated

that 22 percent of the total skin surface area was in contact with

the cooling tubes in their experiments. All of their subjects were

reported to have been comfortable with the lowest water inlet tem-

perature of 160C and high metabolic rates of 2400 Btu/hr (700 w) for

two hours.

It is evident that during the second part of the experiments of

Schedule V, a quasi-steady state was never reached. This finding was

true for the metabolic rates and amounts of heat removed by the cool-

ing suit (Fig. 5.5) and also for the heart rates and ear canal tem-

peratures (Fig. 5.7). These quantities show a clear trend of increase

with time at least during the two hours of the short (15 minutes each)

alternate changes in levels of activity. The amount of heat removed

by respiration, however, seems to have reached a quasi-steady state

after 15 minutes or less from the onset of a change in the exercise

level (Fig. 5.5 and TABLE F.1). This result indicates that the transi-

ent time of the respiratory system is much shorter than that of the

thermal system of the human body within the investigated range.
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Figure 5.7 Individual variations in the ear canal temperatures
and heart rates for Schedule V.
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During the second part of the experiments of Schedule V, heart

rates not only showed a trend to increase with time but also exceeded

the values found in the first part. This observation is a possible

indication of a fatigue effect that was supported by the feeling of

all the subjects. It is also indicative of a lack of steady state.

During the experiments of Schedules III, IV, and V, the effects

of gradual and abrupt step changes from standing to walking at 4 mph,

were.considered. No significant differences were found in total me-

tabolic rates and amounts of heat removed by the cooling suit

(Figs. 5.3, 5.4, and 5.5). Of those two quantities, only the cool-

ing effectivenesst of the cooling suit seemed to have changed during

the experiments of that schedule which included two intermediate

steps (Schedule IV). This result may mean that during the experi-

ments of Schedule IV the thermal steady state of the moderately high

activity level was more nearly attained because of the two intermediate

step changes preceding it. However, there were differences in the

temperature of the ear canal. It was found to be lower by about

0.50C when a step change from standing to walking at 4 mph was intro-

duced without any intermediate changes (Fig. 5.6). There were no ma-

jor differences between the temperatures of the ear canal measured

during both experiments that involved gradual changes (Schedules III

and IV). This observation probably indicates that the transient time

for a thermal steady state in the human body is longer than 45 minutes

and is more likely of the order of two hours.

TABLE F.1 in APPENDIX F summarizes the mean values and the ranges

of the total metabolic rates and of the amounts of heat removed by the

tCooling effectiveness of the cooling suit was defined as the ratio of
the rate of heat removed by the suit to the total metabolic rate.
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suit and by respiration at the various schedules of activity.

Figures 5.8 through 5.12 show the relative amounts of heat re-

moved by the suit at the various regions of the body as functions of

the different schedules of activity. Based on these data, the follow-

ing observations were made:

(1) The relative amount of heat removed from the arms by the

arm pads was the lowest in most cases. It ranged from 1.7

percent to 7.2 percent of the total removed by the suit and

was usually around 3 to 4 percent. This was despite the

fact that the arm pads covered about 18 percent of the total

skin surface area covered by the suit. It is assumed that

this finding should be attributed to the nature of the sched-

ules of activity used in this study; these were composed pri-

marily of work of the leg muscles and did not involve much

arm work. This assumption is supported by the fact that the

relative value of the heat removed at the arms increased dur-

ing the walking sessions with the subjects swinging their arms.

(2) The largest amount of heat removed by the suit from a single

region came from the thighs. It ranged from a low of 25.8 per-

cent (while standing) to a high of 41.7 percent (while walking

at 3 mph) of the total removed by the suit. As the metabolic

rate exceeded the upper limit that could be accommodated by the

suit, the relative amount of heat removed from the thighs de-

creased. This is probably due to the too high water inlet tem-

peratures and the too small contact areas between the skin

overlying the thighs and the cooling tubes. As a result, heat

d- 5q
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Figure 5.8 Mean values of the amounts of heat removed by the cooling
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was probably carried away from the thighs by the blood

stream to be dissipated elsewhere where conditions were

more favorable. Also, the "deep body" temperature in-

creased and sweating was enhanced, as indicated by higher

weight losses (TABLE 5.2).

(3) A relatively high percentage of the.total heat removed

by the suit came from the head which constitutes about 7

percent of the total surface area. It ranged from 10.3

percent to 36.9 percent. The highest values were obtained

during the second part of the experiments of Schedule V

(Fig. 5.12). This result seems to indicate that during

the thermal transient period from the onset of a change in

activity level, relatively high amounts of heat are re-

moved from the head. According to Nunneley [721, up to 40

percent of the total metabolic rate was removed from the

head during resting and steady states by a cap consisting

of cooling tubes. In her study, however, she did not use

a cooling suit along with the hood. Another study with a

cooling suit that included a cooling hood was reported by

Shvartz [73]. He found that during steady states, the

hood removed about 40 percent of the total removed by the

cooling suit assembly. However, 12 percent of the total

surface area was covered by the hood in his studies as

compared to only about 5 percent that was covered by the

hood in the present study.

(4) During the experiments of Schedule I more heat was removed

S65<
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TABLE 5.2

WEIGHT LOSSES DURING TREADMILL EXPERIMENTS

Subject Schedule

I II III IV V

Weight loss-w -- t 450 875tt 738 472
(gr)

Aw/w (gr/kg) -- 6.89 13.02 11.16 7.25

Aw/t (gr/hr) -- 94.7 145.8 118.1 75.5

Aw/w/t (gr/kg,hr) -- 1.45 2.17 1.79 1.16

Weight loss-Aw 390 346 516 478 412ttt
(gr)

SKB Aw/w 6.46 5.74 8.44 7.78 6.75

Aw/t 78 65.9 114.7 95.8 91.6

Aw/w/t 1.29 1.09 1.88 1.56 1.50

Weight loss-AwWeight ss-w 262 370 758 718 930
(gr)

HNT Aw/w 4.01 5.81 11.92 11.04 14.49

Aw/t 61.6 70.5 126.3 131.7 169.1

Aw/w/t 0.94 1.11 2.00 2.03 2.63

Weight loss-AwWeight ssw 232 456 468 506 636
(gr)

RET Aw/w 3.61 7.05 7.31 7.96 9.87

Aw/t 48.8 96.0 98.5 113.7 127.2

Aw/w/t 0.76 1.48 1.54 1.79' 1.97

Weight loss-Aw
(gr) 382 424 590 662 --t

PF Aw/w 6.88 7.64 10.47 11.82 --

Aw/t 63.7 84.8 131.1 132.4 --

Aw/w/t 1.15 1.53 2.33 2.36

tDid not complete the schedule.

ttIrregular schedule.

tttShorter activity schedule.

(continued)
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TABLE 5.2 continued

Subject Schedule

I II III IV V

Weight loss-Aw 317t 409 583t 620 679tt
(gr)

MEAN _w/w 5.62 6.63 9.53 9.95 9.59

Aw/t 64.4 82.4 117.7 118.3 115.8

Aw/w/t 1.05 1.33 1.94 1.91 1.82

Weight loss-Aw
414 382 382 654 646

(gr)
SKB

Aw/w 6.72 6.19 6.15 10.60 10.52
WITHOUT

SUIT Aw/t 82.8 84.9 89.9 124.6 143.6

Aw/w/t 1.34 1.38 1.45 2.02 2.34

tAverage of 4 runs.

ttAverage of 3 runs.
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by the cooling suit during the first walking session at

two mph than that removed during the second at 2.5 mph

(Fig. 5.8). The reason was the unexpected drop in "deep

body" temperature as indicated by the temperature of the

ear canal (Fig. 5.6). It should be noted that no readjust-

ments in water inlet temperatures were permitted during

these experiments. All changes were due to the instability

of the cooling system. Therefore, this phenomenon of less

heat removed by the suit at a higher metabolic rate is not

considered to have any physiological meaning.

(5) During the experiments of Schedule II readjustments of the

water inlet temperatures at the same level of activity re-

sulted in the following changes:

(a) The total metabolic rate decreased, (Fig. 5.2),

(b) The amount of heat removed by the cooling suit in-

creased, (Fig. 5.9), and

(c) The temperature of the ear canal dropped, (Fig. 5.6).

Consequently, the cooling effectiveness of the suit in-

creased from 0.39 to 0.56, (TABLE F.1). Also, it is clear

that adjustments of water inlet temperature actually did di-

minish the subjects' heat strain.t This reduction of heat

strain was in spite of the consistent comfort vote of

tHeat strain is often referred to as the physiological response in con-
sequence of a heat load [74]. This should be distinguished from the
heat stress which is used to denote the heat load imposed on man [741.
A commonly used index to assess physiological strain was developed by
Craig [751 and modified by others [761. It is a linear combination of
heart rate, rise in rectal temperature and sweat production rate.
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"comfortable" obtained throughout the experiments of

Schedule II (TABLE 5.1). The findings of this section in-

dicate that additional cooling provided by some artificial

means, e.g., a cooling suit, may reduce heat strain beyond

that which is considered "comfortable" by human subjects.

A similar conclusion was reached by Gold and Zornitzer [77].

Figure 5.13 shows the average values of water inlet tempera-

tures at the various regions of the body for Schedule II. This sched-

ule was selected for comparative presentation for two reasons:

(1) The effect of additional cooling at the same level of ac-_

tivity was studied during the experiments of this schedule

and

(2) The metabolic rates encountered during the experiments of

this schedule did not exceed the cooling capacity of the

suit.

It can be seen that during the initial standing session, most of

the subjects preferred an almost uniform temperature all over the body

(Fig. 5.13a). This situation did not change during the first walking ses-

sion where no additional cooling was permitted (Fig. 5,13b). Immedi-

ately following the first walking session, the restrictiQn on the addi-

tional cooling was removed. A decrease in most water inlet temperatures

was then requested by all of the subjects (Fig. 5.13c). The average

changes requested for the arms and thighs were about 1.. 2 to 1.30C,

the head and upper and lower torso 0.2 to 0.60C; and the highest de-

crease in water inlet temperature, 2.30C, was requested for the lower
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Figure 5.13 Mean water inlet temperatures at the various regions
of the body for Schedule II.
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legs. During the second walking session at 3 mph (Fig. 5.13d):the.re-

quests for decreases in water inlet temperatures were as follows:

arms, upper torso, and thighs, 3.4 to 3.80C; head, 1.40C; lower torso,

2.5 0 C;and, again, the highest decrease in water inlet temperature,

4.7 0C, was requested for the lower legs. During the last standing

period, requested changes in water inlet temperatures to the various

regions of the body were essentially such that they retraced the situ-

ation that prevailed during the second standing session. Only minor

changes were noticeable, (Fig. 5.13e).

As a consequence of the results presented in the preceding section,

the following observations were made:

(1) The working muscles, i.e., thighs and lower legs, exhibited

the highest variability in water inlet temperatures. This

was expected and does not seem to require any further dis-

cussion.

(2) The changes in water inlet temperatures to the head were

the smallest. At the same time, the temperature of the

water entering the cooling hood was, on the average, the

lowest water inlet temperature of all. This indicates that

cooling the head may have a profound effect on the sensation

of comfort, as noted by Nunneley [72] and Shvartz [73].

A complete listing of the water inlet temperatures and their

ranges at the various schedules of activity is given in TABLE F.2o

It should, however, be kept in mind that the values shown there for

the moderately high activity levels (walking at 4 mph) are of limited

meaning. This is because the limited cooling capacity of the present
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cooling system was definitely exceeded during these schedules of ac-

tivity.

In TABLE 5.1, the orders of preferred changes in water inlet

temperatures, from the onset of a change in the level of activity,

are shown. There does not seem to be any consistency in the order

of changes requested by different subjects. Many more experiments

with more subjects are needed to identify those regions in the body

which require faster cooling or warming as a result of a change in

the level of activity.

Weight losses during treadmill experiments are shown in TABLE

5.2. The mean values of weight losses range from about 65 gr/hr (Sched-

ule.I) to about 118 gr/hr (ScheduleslIII and IV). These values, al-

though slightly higher, are consistent with values reported by Webb

and Annis [71]. In four out of five cases, the sweat rates were higher

during the runs without the suit as compared to the runs with the

suit. No fundamental explanation was found for the one run (Sched-

ule III) that exhibited a higher weight loss with the suit. The rea-

son for that may have been due to a measurement error.

Total metabolic rates for subject SKB with and without the cool-

ing suit are compared in Figs. F.1 through F.5. Also compared in

these figures are the temperatures of the ear canal. In most cases,

the total metabolic rate was higher during the experiments with the

cooling suit. This finding is probably due to the fact that there

is a certain energy cost for wearing the suit (higher heat stress).

At the same time, the temperature of the ear canal seemed to have

been slightly lower during the experiments without the cooling suit.
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Also, as shown in Fig. F.6, the heart rate was usually lower during

at least the comparative experiments of Schedule V with the cooling

suit. Heart:rate was not measured during the other experiments with

the suit.. These two, i.e., slightly higher "deep body" temperatures

and lower heart rates, indicate that the heat strain probably was re-

duced during the experiments with the cooling suit.

5.2 EXPERIMENTS WITH THE INDIVIDUAL COOLING PADS

Temperature distributions on the skin between two adjacent tubes

were measured for the three individual cooling pads. The measure-

ments were taken after the test subject had been pedalling for two

hours on the bicycle ergometer at a constant load and speed [corre-

sponding to a total metabolic rate of about 1200 Btu/hr (352 w)].

The measured values were assumed to represent steady state data.

The theoretical steady state temperature distribution on the

skin for the rectangular model with the skin layer and skeletal mus-

cle considered as one combined tissue was obtained from Eq. (C.2)

to yield

Bf
T(x,O) = T + 1 - h' tanh (wb)

0 Wb b cosh(wb) k

- cos (X x) (5.1)
C n

n I

As can be seen from Eq. (5.1), the parameters affecting the steady

state temperature of the skin are:

(1) Temperature of the inner core, T .
o
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(2) Specific heat of blood, cb.

(3) Thermal conductivity of the combined tissue, k.'

(4) Ratio of cooling tube width to cooling tube spacing, B.

(5) Cooling tube spacing, a.

(6) Average heat flux at the skin surface, f a

(7) Number of terms in the seriesused for computation.

(8) Shape of the specified flux function, f(x).

(9) Average heat generation rate per unit volume of tissue,

Q'.

(10) Average blood perfusion rate per unit volume of tissue,

W
b '

(11) Depth of tissue, b.

From these parameters, the first seven could either be measured

or estimated. The remaining four, i.e., f(x), Q', wb, and b, were

left to be estimated by the method of fitting a theoretical curve

to the experimental data. Curve fitting was dope with the aid of

a digital computer. A program was written for evaluating Eq. (5.1)

for various combinations of the unknown parameters. The computer

output was then analyzed to determine that combination of parameters

which yielded a curve fitting closely with the-experimental data while

the parameters met a set of predetermined criteria. These criteria

were:

(1) The lowest temperature of the skin should not be below 600 F.

This assumption was based on the cooling water temperature

which was measured at 550 F.
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(2) The depth of tissue should not exceed 0.2 ft or be less

than 0.05 ft.

(3) Only measurements taken away from the cooling tubes were

considered accurate. Measurements underneath the cooling

tube were assumed questionable because of the interference

of the thermocouple with the contact between the cooling

tube and the skin.

(4) The blood perfusion and heat generation rates per unit vol-

ume of tissue should not exceed values found in the litera-.

ture.

The results obtained for the three individual pads are shown

in Figs. 5.14, 5.15, and 5.16. In view of the complexity of the prob-

lem, the agreement between the measured and calculated values is re-

markably good. It should, however, be noted that the set of parame-

ters that yielded a good fit to the measured data is not unique.

Improved techniques for measuring the unknown parameters are required

to render the analysis presented in this chapter physiologically more

meaningful.
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Figure 5.14 Comparison of measured and calculated temperature
distribution on the surface of the skin for the
rectangular model. Pad No. 1, wb = 83.4 lb/hr-ft
Q' = 711 Btu/hr-ft3 and constant temperature at
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6. SUMMARY AND CONCLUSIONS

This study was directed to the exploration of two aspects re-

lated to thermal comfort of man:

(1) The analytical modeling of the thermal behavior of living

biological tissue and partial experimental validation of

the analytical predictions.

(2) The exploration of the characteristics of independent re-

gional cooling of the body by means of a water-cooled gar-

ment (thermal protective suit).

A biothermal model of living biological tissue has been proposed

and studied. This model includes the effects of blood flow, local

heat generation rates, conduction and storage of heat on the heat

transfer processes occuring in the living tissue. A second order,

partial differential equation (referred to as the "bio-heat" equation)

was obtained and analyzed. Closed form, steady and transient state

analytical solutions were obtained for two relevant geometries (cy-

lindrical and rectangular). Good agreement was obtained between the

measured and predicted temperature profiles on the skin surface.

Based on the analysis, the following conclusions were reached:

(1) Blood flow plays a significant role in the transfer of

heat in the living tissue and, therefore, should be ex-

plicitly included in any analytical model of the thermal

behavior of the tissue.

(2) Much more detailed and accurate data of the thermophysical

and physiological properties of the body,. e.g., thermal con-

ductivities and local blood flow rates, are required
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before any extension of the present model should be attempted.

(3) Transient times for reaching a so-called "fully developed"

temperature profile in the tissue are of the order of 5 to

20 minutes.

(4) Transient changes in tissue temperature are strongly dominated

by a.geometrical parameter (separation coefficient).

(5) Under certain conditions, maximum temperature may occur in

the tissue rather than in the inner core (wb > 2.3). The lo-

cation of the maximum temperature was found to be independent

of "deep body" temperature.

(6) For y/b > 2, isotherms in the tissue become parallel.

This observation renders assumptions of constant temperature or

constant flux at the interface between the skeletal muscle and

the inner core equivalent.

(7) The exact shape of the heat flux on the skin has an insignifi-

cant effect on the temperature distribution inside the tissue

at a short distance away from the skin surface. It does have,

however, a noticeable effect on the temperature on the skin

surface.

(8) For R1 > 0.15 ft (radius of inner core in the cylindrical

model) the results obtained from the cylindrical.and rectangu-

lar models are so close that the simpler, rectangular model

can be used without loss of accuracy.

A water cooled garment was constructed and used to study the char-

acteristics of independent regional cooling of the body in contrast to

the current practice of uniform cooling. The cooling garment consisted

80<
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of sixteen individual cooling pads made of 5/32 in. O.D. Tygon tubes.

The pads were grouped to provide independent control of water inlet

temperatures and flow rates to six regions: head, upper torso, lower

torso, arms, thighs and lower legs. Experiments with and without the

cooling suit assembly were conducted with the five test subjects

standing and walking on a treadmill on selected schedules. Steady

and, to a lesser extent, transient state characteristics of the cool-

ing suit were obtained.

Based on the experiments with the cooling suit the following con-

clusions were reached:

(1) There are regions in the body that require more cooling dur-

ing walking than others, e.g., thighs, head and lower legs.

(2) During standing, an almost uniform water inlet temperature

was requested for all regions of the body by the test sub-

jects. This situation changed significantly during exercise.

Conclusions 1 and 2 indicate that independent regional cool-

ing may be more efficient than the present scheme of uniform

cooling.

(3) Cooling of the head during exercise has a profound effect on

comfort.

(4) Transient times for reaching a thermal steady state from the

onset of exercise are of the order of two hours. This

transient time, however, includes a relatively slow active

response of the human thermoregulatory system to changes in

exercise rates, e.g., the shifting of the deep body tempera-

ture.
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(5) During exercise the thermal effectiveness of the.cooling suit

decreased as compared to the values obtained for standing.

(6) Intermediate changes in the level of activity between an

initial and a final level do not have a noticeable effect

on the thermal state so long as sufficient time is allowed

for reaching a steady state corresponding to the final

level of activity.

(7) The cooling suit did actually diminish the heat strain of

the test subjects beyond what was considered comfortable

by them.

(8) The regional order of preferred changes in water inlet tem-

peratures from the onset of a change in the level of activi-

ty could not be determined. More experiments are required

to identify the regiohs of the body that require faster cool-

ing (or warming) than others.

Based on the comparative experiments with and without the cooling

suit, the following observations were made:

(1) Metabolic rates were, in most cases, higher during the experi-

ments with the cooling suit,indicating that a certain energy

cost was associated with wearing the suit, i.e., the subject

was under higher heat stress.

(2) Ear canal temperatures were usually lower during the experi-

ments without the cooling suit.

(3) Heart rates seem to have been lower during the experiments

with the cooling suit.
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(4) Weight losses were usually lower during the experiments

with the cooling suit.

Thus, the cooling suit seems to have reduced the heat strain

even though the heat stress was increased slightly.

Recommendations for future work are the following:

(1) Application of optimization techniques to obtain design

guidelines for the construction of more efficient cooling

suits.

(2) Extension of the model to include the local and temperature

dependent variations of the physiological properties. This

phase, however, should be delayed until more detailed physio-

logical data become available.

(3) Experimentation with various combinations of individual cool-

ing pads, e.g., hood and thigh pad, to determine the local

effects of cooling at various heat stresses and activities.

(4) Experimentation with cooling suits while exercising other

parts of the body, e.g., arms, in order to determine pre-

ferred temperature patterns for the coolant.
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APPENDIX A

THE THERMOREGULATORY SYSTEM OF THE HOMEOTHERM

A homeotherm, or warm-blooded animal, exhibits a tendency to

stability in the normal body states (fixed internal environment).

The objective of the thermoregulatory system is counter any ex-

ternal or internal changes in heat stress while maintaining the tem-

perature and metabolism (the transformation by which energy is made

available for the uses of the organism) at the levels essential to

life. This thermoregulatory system is composed of three interconnected

elements: control, sensory, and regulatory mechanisms.

It is generally accepted that the center of thermal control is

located in the hypothalamus, a structure in the brain which forms

the floor and part of the lateral wall of the third ventricle [78,

79]. There appear to be two centers in the hypothalamus that are

concerned with temperature control; the more posterior one, concerned

with protection against cold, and the anterior one, concerned with

protection against heat. These two centers are mutually inhibitory.

The temperature which is being regulated, usually referred to as "deep

body" temperature, is, however, not constant. It changes, within a

narrow range above and below the "normal" temperature, with the meta-

bolic rate. This concept of a "set point" rather than a fixed one

was postulated by Hardy [80].

Thermal receptors in the skin are the major components of the

sensory system [81]. In addition, there are indications that tempera-

ture-sensitive structures exist in the spinal cord [82], in the vol-

untary muscles [81], in the hypothalamus [551, and in the respiratory
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tract [83], which play a subsidiary role in thermoregulation. Changes

in skin temperature and probably also in heat flux at the skin [55]

trigger a signal which is received by the thermal receptors and which

is sent through the afferent pathways to the hypothalamus.

There exist regulatory mechanisms in the human body that make

up the third element of the thermal system. These mechanisms are

activated in response to need and, in turn, by the control through

the nervous system. Adjustment to cold stress follows the sequence:

(1) Superficial vasoconstriction that diminishes the amount

of heat transported by the blood stream to the skin. This

is balanced by splanchnic dilatation; i.e., dilatation of

blood vessels in the internal cavities of the body.

(2) Pilo-motor activity ("goose flesh") that reduces air move-

ment at the skin and thereby diminishes heat convection.

(3) Increased heat production that can take either (or both) of two

forms: mechanical and glandular. The mechanical part is

achieved by the muscles and is manifested as shivering;

the glandular part involves secretion of adrenalin by the

suprarenal gland. The function of the circulating adren-

alin is to cause modifications in the circulation which

favor blood supply to active muscles and liberation of glu-

cose from liver glycogen and, consequently, a considerable

increase in heat production (20-30 percent increase in rest-

ing metabolism [55]).

(4) Long-term adaptation--decreased blood volume and accumui-a

tion of fat in the outer layers to increase thermal insu-

lation.

85<
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Conversely, the sequence of adjustment to heat stress is as fol-

lows:

(1) Superficial vasodilatation that increases blood flow and,

consequently, the amount of heat transported to the skin.

(2) Sweating which enhances the removal of heat by evaporation

of water vapor from the surface of the skin. Sweating will

follow an increase in deep body temperature caused by heat

storage in the body.

(3) Increased respiration that promotes more heat removal by

expired air. In mammals other than humans, e.g., dogs,

this mechanism, known as panting, is of great importance.

This mechanism, as well as sweating, loses its effective-

ness in saturated or very humid environments.

(4) Long-term adaptation--increased blood volume and decreased

basal metabolism (the minimal energy expended for mainte-

nance of life) due to reduced activity of the thyroid.

An extensive and detailed description of the thermoregulatory

system and its functions was given by Bazett [551.

S86<z
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APPENDIX B

STEADY STATE, RECTANGULAR COORDINATES WITHOUT BLOOD FLOW

If the term representing blood flow is eliminated from Eq. (3.3),

the following heat equation is obtained

P T =kVT +q (B.1)

or, assuming a steady state,

kVT =-q. (B.2)

which is often referred to as the Poisson equation.

Solution to Eq. (B.2) for the geometry shown in Fig. (3.4) is

desirable for two reasons:

(1) There are cases when blood flow diminishes or even vanishes,

e.g., vasoconstriction, and conduction remains as almost

the sole mechanism for heat transfer in the.tissue.

(2) From a more general engineering viewpoint, Eq. (B.2) describes

the energy balance in a material wherein heat is conducted

and generated.. Such cases occur frequently in engineering

and a solution may be useful.

Examination of Eqs. (3.11) through (3.15) reveals that obtain-

ing the solution for this limiting case, i.e., w. - 0, is not straight-

forward, but involves fairly complicated limit operations. Therefore,

the complete problem will be formulated and presented below.

'K-6, 7 <
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ax2  a2 ax 2  2 (.a)

0 < x < a ; 0 < y <b 0< x < a ; 0 < y2 < bT - -1 -2-2
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where 0i and Qi are defined by Eqs. (3.8) and (3.10), respectively.

The solutions for the two zones are: for the skin layer,

Q2 2 Q1
T (x,y) T + -- b2 + - [2b b2 + k*y(2b - )]

Bf n a
(k*yl + b ) + k n

(k 1  2  1  cosh (Anbl)2 n 1
n 1

"tanh (Xb2 ) cosh [An(b - y1
)]

H(A)

sinh (ny
I )

+ csinh os (Ax) (B.6)

and, for the skeletal muscle layer,

T(2Y2) = T 2+ 2 b 2  Y2

T(b - Y 2 )

k (b2  y2
k2

a sinh [A (b2 - Y2 )]

+ k1  2 H(A) cosh (Anb2) cos (2x)n= i

where

k* = -- (B.8)
ki

and H(A), fa , and an are defined by Eqs. (3.15), (3.16), and (3.19),

respectively.

As was noted in the text (Chapter 3), no maximum temperature

is found in the tissue. However, in order for all the excess heat
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to be removed at the skin, the temperature gradients become steeper.

As one result, the temperatures on the skin become lower since deep

body temperature is maintained at about the same level as in the case

with blood flow. In the vicinity of the cooling tube, the tempera-

tures may become intolerably low or even dangerous, particularly if

the cooling strip is relatively narrow (small ) [841.

Buchberg and Harrah studied a similar case [391. They assumed

no heat to be generated in the skin layer (Q1 = 0), but assumed the

thermal conductivity to be a function of temperature. By such means,

they have tried to account for blood flow effects. Employing a nu-

merical method, they obtained the temperature distribution in the

separated layers for a total metabolic rate of 2600 Btu/hr (760 w).

Their results are compared with those obtained here for Q, = 0 in

Fig. B.1 [851. Considering the major differences in the calculation

procedures, the results are remarkably close. The numerical results

obtained for Eq. (B.6) and (B.7) without blood flow (combined tissue,

b 1 b2 , k, - k2 ) and Eq. (C.2) with blood flow are compared in Fig.

B.2. The effect of the blood stream on the temperature distribution

is clearly seen.

Figure B.3 shows the effect of increasing the contact area be-

tween the cooling tubes and the skin on the temperature distribution

on the skin surface. When this figure is compared to Fig. 3.8, it

is evident that one of the effects of blood flow is a higher tempera-

ture at the skin surface.

90O<
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99.7 OF

95 Eqs. (B.6) & (B.7)
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Muscle

85

80

55 75
50 Skin

65

70
43.60

Figure B.1 Comparison of steady state temperature distributions
in the tissue for the two-dimensional, rectangular
model without blood flow. Qm = 2600 Btu/hr (760 w),
B = 0.1, constant temperature at inner core.
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99.7 F

99

Eq.(C.2), With Blood Flow

Eqs. (B.6) 8 (B.7), Without Blood Flow

98

96.5

- 97. 5
94
/ 95 \

94.33 \
(93.07)

Figure B.2 Comparison of steady state temperature distributions
in the combined tissue for the two-dimensional rectangu-
lar model with and without blood flow. Qm = 290 Btu/hr
(85 w), S = 0.1, constant temperature at inner core.
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Figure B.3 Effect of increasing the contact area between the

cooling tubes and the skin on the temperature dis-
tribution on the skin surface. Blood flow effects

are not included. Qm = 290 Btu/hr (85 w), f2 /f1 = 1.5
and constant temperature at inner core.
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APPENDIX C

STEADY STATE, RECTANGULAR COORDINATES WITH THE SKIN

AND MUSCLE CONSIDERED AS A SINGLE REGION

If the skin .and skeletal muscle layers are combined to form one

layer and if both the thermophysical and the physiological properties

are averaged, the problem becomes

2 e - w2  = -Q (C.la)

0 < x < a ; < y < b

with the boundary conditions,

8e
at x = 0 ,0 (C.1b)ax

at x = a , -x = 0 (C.1c)
ax

De6 - f(x)) y k 0

at y = 0 , (C.1d)

-- = 0 Ba < x < a

at y = b , 6 = o (C.le)

The solution to this set is [581

T(xy) = T +Q - cosh (wy) f a sinh Ew(b - y)0
1 2 cosh (wb) kw cosh (wb)

ao sinh [C(b - y)]

- .cosh (b) cos (X x) (C.2)

n1ln = 1

Figure C.I shows results that were obtained for Eq. (C.2).

"-'94<
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99.70 F
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85
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- -75

69.66

Figure C.1 Steady state temperature distribution in the combined
tissue for the rectangular model. Qm = 2600 Btu/hr,
(760 w), 3 = 0.1 and constant temperature at inner core.
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If the fourth boundary condition, Eq. (C.le), is changed to uni-

form flux at the interface between the combined tissue and the inner

core, that is,

Fae o
at y = b , = - (C.3)

a solution is obtained [58],

Q a cosh [w(b - y)] o cosh (wy)
T(xy) 1  2 kw sinh (wb) +w. sinh (wb)w

a. cosh [C(b - y)]
h cos (A X) (C.4)

sinh (wb) n
n 1

Figure C.2 shows results that were obtained for Eq. (C.4).

Solutions for the corresponding one-dimensional cases, i.e.,

uniform cooling at the skin, may be readily obtained from Eqs. (C.3)

and (C.4) by eliminating the x-dependent series and replacing the

term Bf by F.

a26<
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Figure C.2 Steady state temperature distribution in the combined
tissue for the rectangular model. Qm = 290 Btu/hr
(85 w), S = 0.1, constant flux at inner core.
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APPENDIX D

THE FUNCTION ip (5r)

During the mathematical derivation of the cylindrical model,

a combination of modified Bessel function was found to recur; namely,

k ir ) -k(ir)K i ) + (-)k++ I (iRj )Kk(ir) (3.37)

This shorthand definition simplified the derivation considerably.

A few characteristics of this function are given below.

(1) The function k( i r) satisfies the modified Bessel equa-

tion of order k,

i d d ( .ir) 2 +k 2
r dr dri k2 k

r d r ~ r r - i +  - - k ( i ) = 0( D I

(2) This function obeys the same differentiation rule as does

the modified Bessel function of the first kind [64]

rd [.i (C r+)]= kk (~i r) + Si r4Tk.l (i r) (D.2)

Therefore, it is not a so-called cylinder function [64].

(3) For two consecutive indices, it satisfies [61]

1 (D.3)k(k+1) i

(4) If the indices of the function are reversed in order, the

following expression is obtained

(C+,k r) (-1) k (lir) (D.4)

IrlS
0' ' 8, LQ
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(5) For identical indices the following identity is obtained

kk i ) E 0 (D.5)

When drawn on a semi-log paper, the function 4k (wR) appears

to behave as a straight line away from the minima.(Fig. D.1, k = 0,

k = 1, j = 1). Also the slopes of these straight lines appear to

be identical. This phenomenon suggests approximation of the function by

using exponential expressions of the kind,

k,) k=1 U(i i  ) exp (sCi r) (D.6)

< -

r R

where U is the function describing the dependency on the parameter

i R , s is the common slope, and R is the value of the variable be-

yond which this approximation is valid.

1 1
Figures D.2 and D.3 show the functions (wR) and p (wR).

00 12

As can be seen, these two functions exhibit the same characteristics as

noted above, i.e., linearity on a semi-log paper, and, therefore,

can also be approximated by expressions such as Eq. (D.6).

<:
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Figure D.1 The function IP0(wR) drawn on semi-log paper.
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Figure D.2 The function 0 (wR).
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Figure D.3 The function V (wR) drawn on semi-log paper.
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APPENDIX E

STEADY STATE, CYLINDRICAL COORDINATES WITH THE SKIN AND MUSCLE

CONSIDERED AS A SINGLE REGION

Combining the two layers into a single, averaged -layer yields

rr ± + w O = -Q (E.la)

RI < r < R2 , < z < a

with the boundary conditions,

at r = R1 , 0 = 0 (E.1b)

S f(z) 0 z < Ba) r k _

at r = R2 , (E.1c)
aO

- 0 ,a < z < a

-Qat z = 0 , @ 0 (E.ld)
Dz

at z = a , - 0 (E.le)

The solution is

2 1

T(r,z) = 'T + - 1 -
w 1, (wR1) kw (wR)

- 0  Cos (n z) (E.2)

n =1 1(R) 

Figure E.1 shows results that were obtained for this case.
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Figure E.1 Steady state temperature distribution in the combined

tissue for the cylindrical model (cooling tubes on the

skin running perpendicular to the axis of the cylinder).

Qm = 2600 Btu/hr (760 w), B = 0.1, constant temperature

at inner core.
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Modifying the first boundary condition, Eq. (E.1b), to the con-

stant flux case, that is,

F
at r = R (E.3)

1 , r k

yields

Q a 01(wr) Fo 1(

T(r,z) = T1 +S w2 kw 2 1) kw 2 1(w

S001
- cos (X z) (E.4)

n =n

Because of the cylindrical geometry, an additional parameter appeared;

namely, wR2 . If the body is assumed to be represented by one cylin-

der, an assumption which is equivalent to the rectangular case, three

independent combinations arise as R1 is changed:

(1) The volume and thickness of the cylindrical shell are con-

stant while the skin surface area changes,

2V
A 2 (E.5)b(l + p*)

(2) The volume and surface area of the cylindrical shell are

constant while the thickness changes,

b= - + +~A (E.6)

(3) The surface area and the thickness of the cylindrical shell

are constant while the volume changes,

3(,.5<



168

V Ab p*] (E.7)

where

p = 1  (E.8)
2

Assuming a uniform flux at the skin, the above three cases were

evaluated, as f'nc ions of R1 , and are compared to the limiting case

as R1 - (rectangular case). The results are presented in Figs.

E.2, E.3, E.4, and E.5.

For completeness, the limiting cases for no blood flow, wb + 0,

are presented below.

Using limit calculation techniques, it can be shown

2

2o (wr)
lim (E.9)

w 0O %1(wR)

lim -2- = (R r )+ R n R1

w + 0 w ol(wR)

lim - 2 Rn _ (E.11)

w -+ 0 1 (wR) = 0 n o

and

i oo(r) 1 o n
lim - (E.12)

10 1w + 0 1 o ( R2 )  n 1 0(n)

Then, the solution for the cylindrical case with constant temperature

at the interface between the combined tissue and the inner core, Eqs.

(E.la) through (E.le), but w = 0, can be obtained from Eq. (E.2),

306<
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Figure E.2 Steady state temperature and surface area of the skin

as functions of R for the one-dimensional cylindrical

model. V and b are constant and constant temperature at
inner core.
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Figure E.3 Steady state temperature of the skin and depth of
tissue as functions of R1 for the one-dimensional
cylindrical model. V and A are constant and con-
stant temperature at inner core.
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Figure E.4 Steady state temperature of the skin and volume of

the tissue as functions of R1 for the one-dimensional

cylindrical model. A and b are constant and constant

temperature at inner core.
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Figure E.5 Steady state temperature of the skin as function of
R, for the one-dimensional cylindrical model. Constant
temperature at inner core.
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Q 2 [fa QR2
T(r,z) = T + (R - r ) + + 2 R2 9n

00 1

n 00 n cos (Xz) (E.13)
1 1 0 ( R2 )

Similarly, using the energy balance equation

Q' 2 R2  (E14)
R2 f = RFo + - (R2 - R2 ) (E.14)

Eq. (E.4) can be rewritten

1 2 2 1

Q 2R IP 11(wR2) - w(R - R,) (wr)
T(r,z) = TI +

2Rk w 1 (wR2)

Fo R, 10I(wr ) - R2 1 (wr)

*n 1

2 wi (wR)

+ °n 1(r) cos (X z) (E.15)

n =1 11( R2)

and, by using limit calculation techniques, it can be shown

1 2 2 1
2RP (wR2) - w(R - R ) 1(wr) 2r

lim 21 1 01R2 R n r 2
W 0 w ~ 1 (wP2 ) 2R

+ 2 2 R2

22

+ R [R1 n R1 - n R 2

+ R1(2c I - c3 ) (E.16)
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R1i l (wr) - R2i1 (wr)
lim R R2 kn r

w 0 w 1 (wR 2 )

2 2+ RIR2 R 2 + 2c - c (E.17)
R2 - R,

and

(cr)1 1(Gr) 1 o(wr)
lim 1 1 0 (E.18)

w 0 I 1,R) n $11wR2)

where

C '(1) + i(2) + 2 kn 2
c = (E.19)

c3 = £n 2 - y (E.20)

i(n) is the Psi or Digamma function and y is Euler's constant.

Using the above results, the solution for the cylindrical case

with constant flux at the interface between the combined tissue and

the inner core, Eqs. (E.la), (E.1c), (E.1d), (E.le), and (E.3), but

w = 0, can be obtained from Eq. (E.15),

Q' 2 r o r
T(r,z) = T1 + [ £nr 2. - n r

' [Q'RI F .2 in R R2 kn R]+ 2 1 2
R2 R

1Q 2 2 a 1

+ - 2 + R ) + 7
= 1 n 11 2 )

cos (X z) (E.21)

31 2<
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APPENDIX F

ADDITIONAL EXPERIMENTAL DATA
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I 8 Without Cooling Suit
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Figure F.1 Metabolic rates and ear canal temperatures of subject

SKB for experiments with and without the cooling suit

during Schedule I.
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Figure F.2 Metabolic rates and ear canal temperatures of subject
SKB for experiments with and without the cooling suit
during Schedule II.
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I a Without Cooling Suit

O o With Cooling Suit
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E Note: Connecting lines

do not indicate exact path
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Figure F.3 Metabolic rates and ear canal temperatures of subject
SKB for experiments with and without the cooling suit

during Schedule III.
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I a Without Cooling Suit
f o With Cooling Suit
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Figure F.4 Metabolic rates and ear canal temperatures of subject
SKB for experiments with and without the cooling suit

during Schedule IV.
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Figure F.5 Metabolic rates and ear canal temperatures nf subject
SKB for experiments with and without the cooling suit
during Schedule V.
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Figure F.6 Heart rates of subject SKB for experiments with and

without the cooling suit during Schedule V.
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TABLE F.1

MEAN VALUES AND RANGES OF TOTAL METABOLIC RATES, HEAT REMOVED

BY SUIT AND BY RESPIRATION AT THE VARIOUS SCHEDULES OF ACTIVITY

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent
Btu/hr- 2 by Suit by Respiration Heat Removed

Btu/hr-ft 2 2
Btu/hr-ft Btu/hr-ft Suit Respiration

SCHEDULE I

Mean 17.7 17.9 2.2
Standing -- 12.5

Range 15.0-26.1 12.9-22.4 2.0-3.1

Mean 43.9 22.9 4.2
2 mph 52.2 9.7

Range 40.5-50.5 18.3-28.2 3.9-4.9

Mean 17.1 15.8 2.3
Standing 92.1 13.6

Range 14.4-22.6 11.6-23.5 1.7-3.3

Mean 50.7 19.4 4.7
2.5 mph 38.4 9.3

Range 39.5-60.1 15.8-25.5 4.1-7.3

Mean 18.0 15.1 2.3
Standing 83.8 12.6

Range 17.0-18.8 12.8-18.3 2.0-3.3

(continued)



TABLE F.i continued

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent
Btuihr-ft2 by Suit by Respiration Heat Removed

Btu/hr-ft Btu/hr-ft Suit Respiration

SCHEDULE II

Mean 17 0 17,0 1.9
Standing Rg 7 100.0 11.3

1 Range 14.8-19.6 14.5-23.4 1,3-2.5

3 mph Mean 62.6 24.5 5.4
(w/o additional 39.1 8.7
cooling) Range 54.3-69.5 21.1-26.4 3.0-8.7

Mean 16.1 20.2 2.4
Standing -- 14.8

Range 12.9-17.9 15.0-23.3 1.3-4.2

3 mph Mean 54.8 30.7 4.9
(with additional 56.0 9.0
cooling) Range i42.9-64.6 24.9-37.9 2.3-7.1

Mean 16.0 20.1 2.1
Standing -- -- 12.9

Range 11.8-19,6 15.6-28.2 1.2-3.5

(continued)



TABLE F.1 continued

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent

Btu/hr-ft
2  by Suit by Respiration Heat Removed

Btu/hr-ft2  Btu/hr-ft2  Suit Respiration

SCHEDULE III

Mean 16.6 13.3 2.3
Standing 80.0 13.9

Range 12.3-20.3 11.2-15.3 1.2-3.1

Mean 41.2 18.8 3.9

2 mph 45.6 9.4
Range 27.2-48.8 14.7-28.7 2.8-4.8

Mean 89.4 45.5 7.4

4 mph 50.9 8.3

Range 80.7-100.3 30.0-60.5 5.2-9.6

Mean 46.8 23.6 4.0

2 mph 50.5 8.5
Range 35.5-56.7 21.3-26.0 2.6-6.4

Mean 18.4 14.2 2.4

Standing 77.2 13.2

Range 11.8-23.8 6.6-21.9 1.3-4.6

(continued)



TABLE F.1 continued

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent

2Btu/hr-ft by Suit by Respiration Heat Removed

Btu/hr-ft2  Btu/hr-ft2  Suit Respiration

SCHEDULE IV

Mean 15.7 19.5 1.8
Standing -- 11.6

Range 14.2-15.9 11.5-23.3 1.3-2.3

Mean 41.1 24.9 3.6

2 mph 60.6 8.9
Range 27.0-47.7 16.7-31.7 2.4-5.0

Mean 1  51.0 35.5 4.4

S 3 mph 69.5 8.6
Range 33.0-61.2 31.1-41.4 3.0-5.9

Mean 85,7 49.0 7.7
4 mph 57.1 9.0

Range 62 .5-98.8 35.7-60.7 4.2-10.0

Mean 46.1 23.4 3.6
2 mph 50.8 7.7

Range 38.9-52.2 17.5-30.5 3.1-4.6

Mean 16.0 16.4 2.1
Standing -- 13.4

Range 12.9-19.6 9.1-23.5 1.2-3.9

(continued)



TABLE F.1 continued

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent

Btu/hr-ft
2  by Suit by Respiration Heat Removed

Btu/hr-ft2  Btu/hr-ft Suit Respiration

SCHEDULE V

Mean 16.1 20.6 2.1

Standing -- 13.0
Range 13.7-17.9 12.9-31.6 1.2-3.1

Mean 91.1 50.9 6.6

4 mph 55.8 7.3

Range 78.8-101.4 37.6-61.5 3.5-8.9

Mean 15.1 20.9 1.9
Standing -- 12.6

Range 14.1-17.2 10.0-29.0 1.4-2.4

Mean 82.4 29.8 6.1

4 mph 36.1 7.4

Range 64.3-98.7 26.1-36.8 3.4-8.9

Mean 15.2 28.2 1.9

Standing -- 12.2

Range 13.8-18.0 27.0-31.3 1.3-2.3

Mean 86.8 40.3 6.4

4 mph 46.4 7.4

Range 72.4-100.6 28.1-59.3 3.5-8.8

(continued)



TABLE F.1 continued

Activity Metabolic Rate Heat Removed Heat Removed Mean Percent

2 by Suit by Respiration Heat Removed
Btu/hr-ft 2 2

Btu/hr-ft Btu/hr-ft Suit Respiration

SCHEDULE V cont.

Mean 17.4 31.8 1.9

Standing -- 10.8

Range 14.9-23.3 22.5-37.3 1.3-3.0

Mean 87.3 41.4 6.6

4 mph 47.4 7.5

Range 69.8-103.8 34.4-44.8 3.2-9.0

A Mean 18.3 34.8 2.3

Standing -- 12.3

Range 15.9-21.2 22.8-42.8 1.6-2.9

Mean 90.1 42.5 6.6

4 mph 47.1 7.3

Range 72.7-101.6 34.6-50.9 4.0-9.2

Mean 18.3 32.2 2.0

Standing -- 10.9

Range 17.1-19.3 27.4-35.9 1.6-2.6



TABLE F.2

MEAN VALUES AND RANGES OF WATER INLET TEMPERATURES FOR THE VARIOUS REGIONS

AT DIFFERENT SCHEDULES OF ACTIVITY

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE It

Mean 19.6 24.9 22.7 23.1 24.5 23.8
Standing

Range 12.6-22.9 22.1-29.4 12.7-28.9 12.8-28.5 22.6-28.2 20.2-27.6

Mean 19.3 24.8 25.5 23.4 24.2 24.4 00

2 mph
Range 14.5-23.3 22.3-28.2 20.8-31.1 14.3-31.4 22.1-29.6 19.7-29.6

Mean 19.5 25.6 26.5 23.8 26.0 25.3

Standing

Range 15.2-24.1 22.1-29.0 21.2-32.9 15.1-33.2 22.0-31.7 19.5-31.0

Mean 19.6 25.5 26.3 24.2 25.7 25.2
2.5 mph

Range 15.7-24.6 21.5-28.7 21.0-32.6 15.5-33.6 20.9-31.7 19.0-30.9

Mean 20.3 25.0 25.8 24.3 25.3 24.7
Standing

Range 15.9-24.6 21.3-27.6 20.5-32.1 15.8-34.1 21.2-31.0 19.0-30.3

tAverages of 5 runs.

(continued)



TABLE F.2 continued

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE IIt

Mean 24.0 24.8 24.3 26.5 23.6 28.8

Standing

Range 15.5-33.1 21.7-27.6 20.2-28.6 21.4-30.1 21.5-25.7 26.3-31.1

3 mph Mean 22.8 24.8 24.3 26.2 23.7 28.7

(w/o additional

cooling) Range 15.5-29.1 21.7-28.5 20.6-29.2 21.8-29.8 21.2-26.0 26.4-31.8

A Mean 22.2 23.6 24.1 25.8 22.4 26.4

Standing
Range 15.2-29.7 22.3-26.2 20.6-27.2 21.8-28.6 19.1-25.3 18.2-31.4

3 mph Mean 20.8 20.1 20.7 23.3 18.6 21.7

(with additional

cooling) Range 14.9-26.1 14.8-23.0 14.8-22.6 17.5-29.1 17.0-19.3 16.9-29.5

Mean 21.8 22.2 24.1 26.3 22.0 22.1

Standing

Range 15.0-34.4 19.8-25.8 22.0-28.8 24.4-28.5 19.0-26.6 17.4-28.6

tAverages of 5 runs.

(continued)



TABLE F.2 continued

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE IIllt

Mean 22.5 25.7 27.8 26.5 26.9 28.3
Standing

Range 18.4-26.0 19.1-29.1 22.3-32.2 24.6-29.0 23.2-29.8 25.9-31.3

Mean 19.5 25.3 25.1 26.7 25.3 28.3
2 mph

Range 16.6-25.1 19.7-30.1 22.1-29.5 23.4-29.0 21.9-30.4 25.8-33.4

Mean 17.0 18.7 17.9 18.2 18.8 18.6
4 mph

Range 16.1-18.4 16.0-27.1 16.0-22.9 16.0-25.6 16.0-28.6 16.0-27.7

Mean 19.5 22.0 19.2 21.0 23.8 20.2
2 mph

Range 16.3-25.2 16.5-27.2 16.5-23.0 16.6-25.6 16.7-32.5 16.6-27.8

Mean 21.6 22.5 21.6 24.1 25.3 21.7
Standing

Range 16.3-28.4 16.5-28.6 16.5-24.9 16.8-29.2 19.4-33.5 16.6-29.3

tAverages of 5 runs.

(continued)



TABLE F.2 continued

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE IVt

Mean 22.9 27.6 26.7 25.0 23.8 25.6
Standing

Range 17.3-28.2 21.2-36.6 25.1-28.4 19.1-29.4 19.7-31.7 19.3-30.8

Mean 23.3 25.1 26.0 24.8 22.4 24.2
2 mph

Range 17.1-32.1 19.0-31.3 22.6-28.3 20.1-27.7 20.7-25.0 20.4-30.5

Mean 22.3 23.6 24.8 21.5 19.5 22.6
3 mph

Range 17.4-25.1 18.6-29.0 20.6-28.1 17.2-25.0 17.3-23.2 17.6-30.5

Mean 16.9 19.7 19.6 18.5 18.1 18.2
4 mph

Range 16.2-17.3 16.6-30.3 17.0-29.0 16.5-25.8 16.6-23.4 16.6-23.9

Mean 18.9 22.2 21.9 20.9 19.8 19.5
2 mph

Range 17.1-23.2 16.8-29.6 17.3-28.5 16.8-25.4 17.0-23.2 16.8-23.6

Mean 23.7 26.5 25.4 24.9 22.5 22.3
Standing

Range 17.2-32.5 22.0-29.5 22.2-28.9 20.5-29.1 20.9-24.7 19.9-24.6

tAverages of 5 runs. (continued)
(cont inued)



TABLE F.2 continued

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE Vt

Mean 22.1 24.9 25.3 28.0 25.7 26.9
Standing

Range 19.0-25.4 19.7-32.6 20.5-29.9 24.7-31.4 21.8-27.8 25.0-29.0

Mean 17.0tt 20.2 18.3 19.7 16.9 16.8
4 mph

SRange 16.8-17.4 16.6-30.1 17.1-21.1 16.5-21.1 16.7-17.2 16.5-17.1

C Mean 19.8 23.1 27.2 26.1 24.0 20.6
A Standing

Range 17.8-21.7 17.1-25.6 17.6-38.6 17.4-34.5 21.0-25.4 17.6-25.2

Mean 19.6 23.0 27.0 23.2 21.9 18.6
4 mph

Range 17.2-21.5 16.8-25.5 17.3-38.0 16.8-34.4 16.9-25.4 16.8-22.5

Mean 19.7 22.9 25.9 23.3 21.9 18.5
Standing

Range 17.0-21.8 16.7-25.4 17.2-33.6 16.7-35.0 16.8-25.4 16.6-22.0

Mean 19.4 21.9 23.2 21.7 20.6 18.4
4 mph

Range 17.1-21.4 16.8-26.0 17.3-27.8 16.8-29.1 16.9-24.4 16,7-21.9

tAverages of 4 runs.

ttAverages of 3 runs. (continued)
(continued)



TABLE F.2 continued

Water Inlet Temperature, deg C

Activity Region

Head Arms Upper Torso Lower Torso Thighs Lower Legs

SCHEDULE V cont.t

Mean 19.2 21.7 22.8 21.4 20.3 17.9
Standing

Range 16.8-21.3 16.6-25.6 17.1-26.9 16.5-28.5 16.7-24.2 16.5-21.4

Mean 19.3 21.7 22.8 21.4 20.4 18.2
a 4 mph

Range 16.9-21.4 16.7-25.6 17.2-27.0 16.7-28.3 16.8-24.4 16.6-21.4

A SMean 19.3 21.8 23.0 21.4 20.4 18.3
Standing

Range 17.1-21.1 16.9-26.1 17.4-27.7 16.9-28.0 17.0-24.0 16.8-21.5

Mean 18.1 21.8 20.3 19.8ft 20.0 18.6
4 mph

Range 17.3-19.8 17.0-28.1 17.4-22.6 17.0-25.3 17.0-22.1 16.9-23.0

Mean 18.7 21.5 21.1 19.3tt 20.3 18.4
Standing

Range 17.2-20.1 16.9-26.3 17.5-22.8 17.0-24.1 17.0-22.7 16.9-22.3

tAverages of 4 runs.

ttAverages of 3 runs.
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ABSTRACT

An analytical and experimental study was done on the per-

formance of cooling pads attached to a human thigh. Each cooling

pad consisted of a long, water cooled tube formed into a serpen-

tine shape with uniform spacing between the parallel sections.

The analytical work developed a cylindrical model for the hu-

man thigh. The transient times predicted by this model ranged

from 25 to 80 minutes, which is reasonably close to the experiment-

al results. Calculated and measured steady state temperature pro-

files were in fair agreement.

Three cooling pads with different cooling tube sizes and spac-

ings were constructed and tested. These pads were equipped with

thermocouples to measure the temperature profiles between adjacent

tubes on the skin surface of a thigh of a male subject while he was

performing various activity schedules. The pad with the highest

tube density removed the greatest amounts of heat with the least

temperature variations on the skin. Also, the transient times for

this pad were the shortest.

The transient times associated with a change from a high meta-

bolic rate of 1800 Btu/hr (528 w) to a low level of 300 Btu/hr (88 w),

were found to be about 120 minutes. A change from 900 Btu/hr (264 w)

to 300 Btu/hr (88 w) resulted in 90 to 100 minute transients. How-

ever, the transient times for a change in metabolic rate in the oppo-

site direction from 300 Btu/hr (88 w) to 1800 Btu/hr (528 w) were

40 to 60 minutes. When an intermediate step of 900 Btu/hr (264 w) was

introduced between the last two metabolic rates, the transient times

associated with the individual steps varied from 40 to 80 minutes.

However, the overall transient times for each double step were approxi-

mately the same in either direction.
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NOMENCLATUREt

a half distance between cooling tubes, [LI

A total skin surface area, [L2

b depth of tissue layer, [L]

Cb specific heat of blood, [L2 6-2 T- 1 or [QM -1 T ]

c specific heat of tissue, [L2 6-2 T-  or [QM-1T-I ]
p

f heat flux, [M -3 ] or [QL -26 ]

F,F uniform heat flux, [M -3 ] or [QL -2 6- ]1

h height, ELI

I. modified Bessel function of the first kind of order i

J. Ressel function of the first kind of order i

k thermal conductivity, EML-3 T- ] or [QL - 0- T- ]

K modified Bessel function of the second kind of order i
1

qb rate of heat transported by blood, defined by Eq. (2.1),

EML-I 6-3] or [QL -3 6 - ]

Qi defined by Eq. (2.13), EL- T]

nqm, internal heat generation rate per unit volume, [ML - 6 1-  or [QL-3 6-I

Qm total metabolic rate, [ML2 -3  or [Q6 - I

r radial coordinate, [L]

R, radius of inner core in cylindrical model, [LI

R12 radius of interface between skeletal muscle and skin layer

in cylindrical model, [LI

R2  radius of the skin surface in cylindrical model, [LI

tUnits in brackets are: M, mass; L, length; 6, time; T, temperature;
Q, heat [ML 28 - 2].
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t time, [6]

t* characteristic time, [0]

T tissue temperature, [T]

T arterial blood temperature, [T]
a

T constant temperature at inner core, [T]

V volume, [L3

wb blood perfusion rate per unit volume, [ML-3 0- ]

-1
w. defined by Eq. (2.12), [L-

W weight, EML -2 I

Y. Bessel function of the second kind of order i

z coordinate, parallel to the axis of the cylinder, [LI

thermal diffusivity, L 28- 1

a defined by Eq. (2.17), EL- TI
n,i

ratio of width of cooling tube to cooling tube spacing

-1
E. defined by Eq. (2.22), EL I

1

i defined by Eq. (2.15), EL- I

Sratio of heat fluxes of the uncontacted to the contacted

skin

6 defined by Eq. (2.11), [TI

-1
X defined by Eq. (2.16), EL- ]

n

E dummy variable of integration, ELI

-1
Pn defined by Eq. (2.21), EL- I

p specific density of tissue, [ML-3

0 defined by Eq. (2.20)
n

angular coordinate

X. defined by Eq. (2.19)

£ (i r) combination of modified Bessel functions, defined by Eq. (2.10)
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Subscripts

1 pertaining to skin layer or initial state

2 pertaining to skeletal muscle or final state

b blood

i ,J,.k 9Z,n integer

m metabolic
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1. INTRODUCTION

1.1 BACKGROUND

There are many instances in which it may be desirable to regu-

late the micro-climate of an individual who is exposed to a thermally

hostile environment. One may consider, as examples, the necessity to

protect the fire fighter from high temperatures or the need to pro-

tect the deep sea diver from low temperatures. Both require some

sort of thermal assistance to be able to perform efficiently in their

respective environments. In the case of space travel, the astronaut

must be protected from a hostile environment for reasons other than

strictly thermal ones. Here too, the thermal micro-climate of the

astronaut must be controlled in response primarily to his metabolic

heat generation rate, a variable which changes with his activity

level.

Several attempts have been made at solving the problem of

regulating the micro-climate of an individual. One method that has

been developed to regulate the thermal micro-climate of the human

body is to provide for removal or addition of heat by means of liquid

filled cooling or heating tubes in contact with the skin surface.

So-called thermal suits have been designed [1]* which consist of in-

dividual cooling pads. These cooling pads contact the skin surface

of the various major parts of the body, e.g., legs, arms and trunk.

Each individual cooling pad consists of tubes held in some geometric

pattern.

In general, it is not practical to provide an individual with

such a cooling or heating suit if, in doing so, his ability to

*Numbers in brackets refer to entries in REFERENCES.
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function efficiently is seriously hindered. Therefore, for most

applications, the weight and size of the suit become critical fac-

tors. One of the design objectives then would be to minimize the

weight and bulk of the suit while maintaining an adequate cooling

capacity. When considering the parameters of weight and size as

variables governing the efficiency of a man wearing such a suit,

weight seems to be most significant. With respect to weight,

there will be some optimum combination of cooling tube size and

spacing that will provide an adequate cooling or heating capacity.

To date little work has been done on the problem of defining

an optimum relationship between cooling capacity, tube size and

spacing. A potential contribution to the solution of this prob-

lem would be to develop an analytical model of human tissue in

contact with a network of cooling tubes. Such a model should fa-

cilitate the prediction of heat fluxes and temperature distri-

butions in the tissue. The validity of such a model could be

verified by experimental methods.

The purpose of this work was to obtain a solution for such

a model [1] and then to compare the calculated results with ex-

perimental data.

1.2 REVIEW OF RELATED STUDIES

For the past few decades studies have been conducted dealing

with the problem of analytical modeling of the human thermal sys-

tem and with the measurement of thermophysical properties of human

tissue. The results of some comprehensive work done in the area of

analytical modeling is presented in a report by Shitzer, Chato and

Hertig [ll]. In their work, the authors develop the so-called
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biothermal model for various geometries.

Some experimental work has been done in an attempt to provide

a thermally controllable micro-climate for an individual. The con-

cept of a water cooled suit was first suggested in 1958 by Billing-

ham [2] and a prototype suit was constructed at the Royal Aircraft

Establishment in 1964 by Burton and Collier [3]. Their primary in-

terest was protection of crewmembers in hot environments such as

sunlit aircraft cockpits, but it was realized that practical personal

cooling would have many possible applications. In general, the suit

was thought of as a form-fitting heat exchanger in which water ab-

sorbed heat from the pilot's body as it passed through tubes over

the skin. The heat was then dissipated by an external heat sink.

By analogy with the circulation, the process is generally called con-

vective cooling [31 although other investigators refer to it as

"conductive cooling" [4,5].

A prototype water cooled garment (WCG) was built [31 of 40 PVC

tubes sewn to a suit of cotton underwear. Water was piped to the

ankles and wrists where manifolds distributed it to smaller tubes

which ran back over the limbs to the outlet manifolds at the mid-

thorax. The head and neck were not cooled. Preliminary tests in-

dicated excellent thermal coupling between the skin and water stream

[3]. The suit was comfortable even when high heat loads necessi-

tated low water temperatures and despite the existence of wide dif-

ferences in skin temperatures when comparing sites directly be-

neath the cooling tubes with sites lying between the tubes [6,7].

Following a demonstration of the British WCG at Houston [31,

development of similar garments in the United States was undertaken



for the National Aeronautics and Space Administration (NASA), [8,9].

A series of suits was designed with the distribution of tubing pro-

portional to body mass and with water flow from the extremities

toward the torso. Experiments demonstrated the practicality of the

WCG as a sole heat sink for men working at metabolic rates up to

2000 Btu/hr, which was the expected activity level rate for lunar

surface activity. Cooling virtually eliminated sweating, and for

any given work rate subjective comfort included a surprisingly

wide envelope of water flow and temperature combinations. Other

results showed that heat output rose sharply over working muscle

groups, e.g., leg versus arm work [8], and that the interposition

of any material between skin and tubing caused significant re-

duction in cooling efficiency [9].

Direct comparison of air and water cooling in pressure suits

showed the latter to be far more effective in reducing signs of

heat stress such as sweat rate and rectal temperature rise. Sub-

jective comfort was also much improved by the WCG. These findings

applied whether the heat stress was due to a hot environment [10,

11] or high work rates [12,13].

The Apollo water cooled garment is a system of clear plastic

tubes sewn inside a suit of stretch underwear with an added nylon

slip layer between tubing and skin [4,5,9]. Cooling is provided

for the torso and legs but excludes the head and neck. Water flows

through 40 tubes in a loop pattern which begins and ends in mani-

folds located at mid-torso. Flow rate is fixed at 237.6 lb/hr

(1.8 liters/min) with manual operation of a diverter valve to
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produce water inlet temperatures of 44.10F (6.70C), 59.9 0F (15.5 0 C),

or 71.60F (220 C). The external heat sink is located in the back

pack where water from a separate supply is sublimated to space. It is

designed to handle continuous loads of 1600 Btu/hr (469 w) with peaks

to 2000 Btu/hr (586 w). Plans for lunar extra vehicular-activity (EVA)

have been tailored to this limit. Lunar surface activities on Apollo 11

and 12 averaged 800 to 1200 Btu/hr (234 to 352 w) [4]. In the case

of Apollo 14, actual levels of 2500 Btu/hr (720 w) were attained,

exceeding the design limit. The resulting heat storage caused noticea-

ble signs of heat strain and much discomfort [141.

At least one group of researchers [7] has considered the problem

of an optimum relationship between cooling tube size and spacing. In

this study experiments were performed in which the tube spacing was con-

sidered as the only variable. The experimental work indicated that the

temperature differences on the skin were of the order of 80F (4.450C)

with 1-in. spacing of 1/8-in. O.D. cooling tubes and 3.50 F (1.940 C)

with 0.5-in. spacing of the same tubes. The temperature profile on

the skin was found to develop approximately three times as fast with the

closer spacing.

1.3 SPECIFIC STATEMENT OF THE PROBLEM

Consideration of the biothermal model of human tissue in con-

tact with a network of parallel cooling tubes [1] led to the follow-

ing three basic objectives of this study:

1. To obtain the solution of the biothermal model for the

steady state and transient cases in cylindrical coordinates.

2. To construct three different cooling pads and to perform

experiments with them. It is hoped that the results may be
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used to gain some insight into the validity of the biothermal

model and its solution, and

3. To compare experimental data for the three cooling pads,

each pad having a different combination of cooling tube size

and spacing.

The solution of the biothermal model should predict the temperature

profile on the skin surface between adjacent cooling tubes. The ob-

jective of the experimental scheme, then, was to construct a cooling

pad and to measure the temperature distribution between the tubes

corresponding to various activity levels. Three different cooling

pad configurations were tested. The corresponding measured results

were then compared to each other and related to the analytical pre-

dictions.

1.4 SCOPE OF THE STUDY AND LIMITATIONS

Experimental measurement of the temperature distribution be-

tween cooling tubes were limited to data taken on the skin surface

of the human thigh. Measurements were taken for three different cool-

ing pads at four metabolic activity levels. In general, the four

activity categories and associated metabolic rates were:

1. Standing, 300 Btu/hr (88 w);

2. Mild work, 600 Btu/hr (176 w);

3. Moderate work, 900 Btu/hr (264 w); and

4. Heavy work, 1800 Btu/hr (528 w).

The metabolic levels associated with mild, moderate and heavy work

were attained by the subject as he rode on a variable load bicycle

ergometer. During the individual experiments the transient temperature
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distribution was also measured as the subject's metabolic rate

changed from one level to another.

Since the experimental measurements of the temperature dis-

tribution was limited to the thigh only, the solution to the

biothermal model was obtained in cylindrical coordinates. En-

gineering judgment, as applied to thermal systems, suggested the

modeling of the leg as a cylinder of finite length. There were,

however, a number of assumptions and limitations to be considered

when modeling the human body. The thermophysical properties of

human tissue and their detailed relationship to the formulation

of the analytical model will be discussed later.
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2. THEORETICAL ANALYSIS

2.1 THE BIOTHERMAL MODEL WITH DEVELOPMENT OF THE GOVERNING PARTIAL

DIFFERENTIAL EQUATION

The problem of developing an analytical expression to describe

the thermal behavior of living human tissue is indeed very complex.

At this time, even the most basic of the mechanisms that govern

heat transfer in living tissue remain unexplained, i.e., the exact

nature of blood perfusion and metabolic heat generation rates have

yet to be described and measured in detail. The problem is fur-

ther complicated by the lack of accurate data on the thermophysical

properties of living tissue. Thus, several assumptions had to be

made before an analytical model could be developed.

1. The thermophysical properties of the tissue were assumed

to be constant in time and space and the tissue to be homo-

geneous and isotropic.

2. The temperature of the blood leaving the tissue was as-

sumed to equal the temperature of the tissue.

3. The temperature of the blood flowing into the tissue was

assumed constant and equal to the temperature of the

artery.

4. Blood perfusion rates and metabolic heat generation rates

were assumed uniform and constant throughout the entire

layer of tissue [15].

The values associated with these rates were considered as average

values.

The storage, conduction and production of heat within the

tissue could be represented by well known expressions in heat

transfer. An additional term was needed to represent the heat
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transported by the blood stream. It was assumed that the amount

of heat gained by the tissue due to blood perfusion was [1]

qb = bCb(Ta - T) (2.1)

Equation (2.1), when substituted into the heat equation, yields

the general form which describes the biothermal model:

pC k b + (Ta- T) + qm (2.2)

Equation (2.2) is a mathematical statement of the first law of

thermodynamics describing the "in vivo" relationship between the

various modes of heat transfer, storage, and production within

biological tissue. It was referred to as the "bio-heat" equation

[1]. Similar forms have been obtained by Pennes [163, Hertzman

[17], Wissler [18], Perl [19], Chato [201, Trezek [21] and Keller

and Seiler [22].

2.2 GEOMETRY, BOUNDARY AND INITIAL CONDITIONS

2.2.1 Geometry

The experimental phase of this study was concerned

with the removal of metabolic heat produced in the thigh muscles

as the human subject engaged in various levels of activity. The

experimental cooling pads have been designed such that the cool-

ing tubes were in direct contact with the skin surface. The cool-

ing pad was placed around the thigh with the axis of the tubes

perpendicular to the axis of the leg, as illustrated in Fig. 2.1.

Consequently, the geometry of the thigh was approximated by a circu-

lar cylinder.

The living tissue that composes the thigh can be divided into

<~-
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three layers:

1. A skin layer composed of epidermis, dermis, and subcut-

aneous fat. The total thickness of these layers varies

from 1 to 6 mm [23]. In the model all excess metabolic

heat was assumed to be removed at the contact areas be-

tween the epidermis and cooling tubes,

2. A layer of skeletal muscle, and

3. An inner core layer consisting of bone and all the in-

ternal members. At steady state this layer was assumed

to be at a constant temperature.

For steady state conditions the first two layers were treated

separately [1], but for the transient cases it was assumed that

these layers could be approximated by a single, combined layer with

averaged properties.

2.2.2 Boundary and Initial Conditions

The temperature of the interface between the skeletal

muscle and the inner core was assumed constant and uniform and

equal to that of the inner core. At the skin surface, a heat flux

corresponding to the amount of heat removed by the cooling tubes

was assumed. No heat was considered to be removed from the remain-

ing areas of the skin which were not in contact with the cooling

tubes. A representation of the leg as a cylinder covered with

equally spaced cooling tubes running perpendicular to the axis of

the cylinder, Fig. 2.1, rendered the problem geometrically symmetri-

cal. Consequently, the lines of symmetry running through the tubes

and one-half the distance between the two adjacent tubes could be

considered as adiabatic planes.

Gradients along the cooling tubes were assumed to be negligibly
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small when compared to those occurring in a direction perpendicular

to the tubes. In mathematical terms

- = 0 (2.3)

and the problem becomes two-dimensional in r and z.

The steady state temperature distribution in the tissue at a

given metabolic rate was assumed to be the initial condition for

the transient state. The geometry and associated boundary condi-

tions for this problem are shown in Fig. 2.2. In the analysis pre-

sented below, the skin and skeletal muscle were considered to. con-

stitute a combined region. The problem as formulated then becomes

1 21 / l2 2(
a-zt- r ar + W2 + Q2 (2.4)a Dt r TG 2 2 2

0z

such that

R <r < R2 , 0 < z < a ; t > 0

with the boundary and initial conditions:

at

r = R , = 0 (2.5)

at

Dr k< z < a
r = R2 , e (2.6)

- 0 , a < z < a

at

ze
z= 0 , = 0 (2.7)

"i <
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Figure 2.2 Geometry and boundary conditions for the cylindrical
model with the cooling tubes on the skin running per-
pendicular to the axis of the cylinder. Skin layer
and skeletal muscle are considered as. a combined region.
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at

ae
z = a ,0 (2.8)

-z

at

F 8521 1 a__ 00_t < 0 = 1 Lw' - 0 i a1, 0 w1r
2 < 2 (wR =- kw 2

W 1  1  1
w

- 00  cos ( z) (2.9)
n w ( R )

n1 1 01 1 1

where

k+k
k cir) - Ik r) K(iR ) - (-1) k +  (i ) ir)

(2.10)

I, and Ko are the modified Bessel functions of the first and second

kind, respectively, of order i. The other parameters appearing in

Eq. (2.9) are defined by

8 = T(r,z) - T1 (2.11)

2 Wb,i cb
w. = (2.12)
, k

+.wb, c (T T)
Qi k b a (2.13)

Ba

f f. ( ) dE (2.14)

0

2 2 2i =W + A (2.15)

n7F

A - (2.16)
n a
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a : _ a k cos (Xe ) dE (2.17)
n,i, a k n

0

The special function k(ir) was defined to simplify the mathe-

matical derivation of Eq. (2.9) [1]. It is a combination of modi-

fied Bessel functions of the first and second kinds which was found

to recur in the solution many times.

Solution to the above set of equations and boundary and initial

conditions was obtained by employing the technique of separating

the variables to yield

T(r,z,t) T1 + - -1 -2

1 2 a RO ) kw2 R)

- cos (X z)

Qf f2 1 a,2. a,12 2 + -y a
27 2 2  1 2 1

n=l n (1R 2 ) - 4

2
* )(]nr) exp [-Cxt

+ 22-
2 2 2 2 2

m n + m 1 ' R ) -4

X (P r) cos (X z) exp {-a[s :+ X ]t)n n m 2 m

(2.18)

364<
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where

X (nr) = Jo(Inr)Y (pR ) - J o(p. )Yo (Pr) (2.19)

J and Y are the Bessel functions of the first and second kind,
o o

respectively, of order zero.

n (PnR 2 ) = (PIR2 )Xn (PnR 2 ) (2.20)

n 's are the roots of

Jo (PnR1 )Y1 nR2 1- J Pn2)Yo(pnR ) = 0 (2.21)

and

2 2 2
Ei = p + w. (2.22)

The first fifteen eigenvalues, -n, were computed using Newton-Raphson's

method. Results are present in TABLE 2.1. As the ratio R2/R 1 ap-

proaches unity (rectangular model), or as n increases, the eigenvalues

approach those of the rectangular model, pn - [(2n - l)Trl/2b, as

is to be expected.

Numerical values of transient temperature distributions in the

tissue and on the skin surface were obtained with the aid of a digi-

tal computer.

Figures 2.3 and 2.4 show results obtained for a one-dimensional

model (uniform cooling of the skin). Step changes in activity level

were assumed from low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760

w) and reversed, respectively. The substantial changes in the



TABLE 2.1

FIRST 15 ROOTS OF EQ. (2.21) AS A FUNCTION OF THE RATIO OF THE OUTER

TO INNER RADII OF THE CYLINDRLCAL. MODEL, -R2 /R. THE. RIGHTMOST. COLLUMN GIVES THE ASYMPTOTIC

VALUES, [(2n - 1)7/2b], AS R1 "  AND R/R + 1 (RECTANGULAR MODEL)

R /Rl 2.46 i. 73 1.37 1.24 1.19 1.15 1.00

R (ft) 0.05 0.10 0.20 0.30 0.40 0.50 0

n

1 17.827850 19.184982 20.156525 20.550354 20.764221 20.898514 21.48830

2 63.293686 63.736526 64.037781 64.161377 64.229202 64,272369 64.46491

3 106.737122 107.005951 107.186890 107.258667 107.301025 107.326599 107.44152

4 149.914780 150.107346 150.236740 150.285004 150.316589 150.336288 150.41813

5 193.003647 193.153290 193o244324 193.295212 193.316849 193.331406 193.39473

6 236,050980 236.173935 236.252670 236.290054 236.304901 236.319809 236.37134

7 279.075439 279.179932 279.249756 279.279053 279.293457 279.304688 279,34795

8 322.091553 322.179932 322.240234 322.263428 322.278320 322.287598 322.32455

9 365.093994 365.173584 365.227051 365.244385 365.258789 365.268799 365.30116

10 408.092285 408.152588 408.201416 408.232178 408.241211 408.249512 408.27777

11 451.093018 451.151367 451.190430 451.213135 451.250000 451.229492 451.25438

12 494.078369 494.135498 494.175537 494.193115 494.200439 494.210205 494.23098

13 537.066895 537.121094 537.157959 537.171143 537.180664 537.189453, 537.20759

14 580.054199 580.104248 580.114258 580.147217 580.156982 580.167480 580.18420

15 623.040283 623,073730 623.105957 623.132324 623.138916 623.145508 623.16080
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Figure 2.3 Temperature distributions in the tissue for the one-
dimensional, cylindrical model. Step change is from
low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760 w)
activity level. Constant temperature of 99.7 0F (37.70C)
at the inner core, R = 0.15 ft (4.6 cm), A and b are
constant.



19

1.0 I I I

0.9

0.8 t = O
5 sec

0.7 - 30 sec

0.6 - 1 min
r-R 5 min

r-R
b 0.5 - 20 min

80 min
0.4 (_.0)

0.3

0.2 - 5 min
20 min

0.1- 80 min

0.0
92 93 94 95 96 97 98 99 100 101

T, F

Figure 2.4 Temperature distributions in the tissue for the one-

dimensional, cylindrical model. Step change is from

high (2600 Btu/hr, 760 w) to low (290 Btu/hr, 85 w)

activity level. Constant temperature of 99.7 0 F (37.70C)

at the inner core, R1 = 0.15 ft (4.6 cm), A and b are

constant.



20

temperature of the tissue were found to occur during the first 5 min-

utes from the onset of the change from low to high activity level.

When the change is reversed, substantial temperature variations occur

during the first 25 minutes, approximately. The final steady state

temperature profile is attained after 25 (low to high) and 80 (high.

to low) minutes. The ratio of these time constants was supported

by the experimental results.

In Fig. 2.5 temperature variations on the skin of the cylindri-

cal model are shown. Time constants associated with this two-dimensional

geometry were found to be identical to those obtained for one-dimensional

cbnfigurations [11 ..

S63<
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-t = 5 sec
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Figure 2.5 Temperature distributions on the skin surface for the
two-dimensional, cylindrical model. Step change is from
low (290 Btu/hr, 85 w) to high (2600 Btu/hr, 760 w)
activity level. 3 = 0.1, constant temperature of 99.7 0 F,
(37.7 0C) at the inner core, R1 = 0.15 ft (4.6 cm), A and
b are constant.
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3. EXPERIMENTS

3.1 OBJECTIVES

The basic objective of the experimental phase of the study was

to measure the temperature distribution on the skin surface between

adjacent tubes of cooling pads placed around a human thigh. This

temperature distribution was measured during activity levels corre-

sponding to low, mild, moderate and high metabolic rates. Also,

the temperature distribution was monitored during the transient

periods between those activity levels. A secondary objective was

to evaluate the effect that various cooling tube sizes and spacings

have on the temperature distribution and the overall cooling ef-

ficiency. Three cooling pads with different tube size and spac-

ing were tested on a human subject while performing various experi-

mental activity schedules. Figure 3.1 is a schematic diagram of the

experimental setup showing the water supply, cooling pad and tempera-

ture measuring equipment.

3.2 EXPERIMENTAL APPARATUS

3.2.1 The Individual Pads

Three different cooling pads were built and tested.

These pads were specifically designed to fit over the right thigh of

the test subject. All three pads were constructed of a flexible,

elastic sheet of 1/8-in. gum rubber. Tygon tubes were affixed in a

parallel configuration to one side of the pads using Eastman Kodak

910 adhesive. The diameter and spacing of tubes were constant for

each individual pad, but varied from pad to pad. TABLE 3.1 gives

the pertinent data on the individual pads. Figure 3.2 shows a view
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Skin Temperatures and
Water Temperature Inside
the Tubing

12 Point Speedomax W Tygon Cooling
Recorder Tubes

Thermocouples

/e " Gum Rubber-
Cooling Pad I

Thermally Insulated
Water Supply Tubing

Channel A

"Differential Temperature"Bruh Recorder LThermopile

Channel Thermocouple

Brush Recorder

"Input Water Temperature" DrainT

Needle

Pressure Rotameter
Regulator

Water
Supply

Figure 3.1(a) Schematic diagram of cooling pad and water supply system
with temperature measuring points indicated.

Cooling Tube

Thermocouples

Skin

Cooling Tube

Gum Rubber Pad

Figure 3.1(b) Cross section A-A showing details of thermocouple
placement.

Q.j w



TABLE 3.1

Data On the Individual Cooling Pads

Approximate Percent
Outside Number Total Area Approximate Percent
Diameter of Rows Length Covered Contact of Area

Diameter of Tubes Area with in Contact
of Tubes of Tubes of Tubes by Pad the Skin with Tubesthe Skin with Tubes

in. cm in. cm in. cm in.2  cm2  in. 2  cm

Pad No. 1 5/32 0.397 1 2.54 10 163 414 140 910 22.9 148 16.4

Pad No. 2 5/32 0.397 5/8 1.59 14 228 580 132 852 32.1 207 24.3

Pad No. 3 7/32 0.556 1 2.54 10 163 414 145 937 28.5 184 19.7
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of one of the individual cooling pads.

Number 30-gauge copper-constantan thermocouples were used to

measure cooling water temperatures and skin temperatures between

the two adjacent tubes. The thermocouples were equally spaced on

a 30 degree diagonal between adjacent cooling tubes. The thermo-

couples were also located such that they were pressed against the

skin surface to insure good thermal contact when the pad was

fastened to the thigh. Figure 3.2 illustrates one of the cooling

pads and thermocouples.

A Leeds and Northrup Speedomax W, 12-point potentiometer-

recorder was used for continuous monitoring and recording of the

temperature of the cooling water and the skin temperatures between

adjacent tubes. The water supply temperature and the difference

between the water outlet and inlet temperatures were continuously

recorded by a Brush Mark 280 recorder. Thermopiles consisting of

five copper-constantan thermocouples connected in series and a

Brush pre-amplifier were used to increase the sensitivity of the

reading of the differential water temperature for the pad. The

water supply lines leading to the pad were thermally insulated with

rubber tubing which provided an air-gap type of thermal barrier.

3.2.2 The Water Supply

The source for the water supply was the cold water line

in the laboratory. Before each experiment the cold water was run

continuously until an equilibrium temperature was reached and the in-

let water temperature became constant at 54.50 F (12.50C). Figure 3.1 shows

the water supply system along with the instrumentation used to record
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the experimental data.

The flow rate was maintained constant by a pressure regulator

and controlled by a needle valve. The flow rate was measured by a

Fischer and Porter Rotameter. All flow rates were maintained con-

stant at 40.5 lb/hr (18.4 kg/hr).

3.2.3 The Metabolic Measurements

For metabolic measurements, expired air samples were

taken with a collecting apparatus and stored in metalized Douglas

bags [24]. These bags were placed inside a sealed Plexiglas cham-

ber whose pressure was maintained at -5 mm Hg. [25]. Air was in-

haled and exhaled through a mouth piece while the nostrils were

blocked with a noseclip. Two sets of one-way rubber flap valves

insured separation of the two streams. The expired air was di-

rected through a 1-in. I.D. rubber hose into a mixing chamber.

One minute sampling was achieved by opening a one-way stopcock

valve thus exposing a previously evacuated metalized bag to the ex-

haled air. The vacuum in the Plexiglas chamber facilitated the

filling of the Douglas bags as positive exhaled air pressure existed

at the inlet to the bag, and negative chamber pressure surrounded

the bag structure.

Air volumetric flow rates were measured by means of a Parkin-

son-Cowan dry gas meter. Inlet and outlet air temperatures were

measured by a Yellow Springs Instrument, Co. Tele-Thermometer and

two No. 401 interchangeable, multipurpose thermistors. Figure 3.3

shows the system used to collect air samples.

Once collected in the individual Douglas bags, the air samples

were analyzed for CO2 and 02 content. A Godart-Mijnhardt CO2 thermal-

,,? , 2
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Figure 3.3 A view of the Tele-Thermometer and system for
collecting samples for determining metabolic rates.
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conductivity meter, Pulmo Analysor Type 44-A-2 and a Beckman Para-

magnetic 02 analyzer, Model C2 were used. The results of this analy-

sis were combined with other data to calculate the metabolic heat

generation rate of the subject [261 which is a measure of the energy

expenditure. Various levels of energy expenditure were obtained by

the subject pedalling a Monark bicycle ergometer at a constant pre-

set speed and load.

3.3 EXPERIMENTAL PROCEDURE AND TEST SCHEDULES

At the beginning of each experiment the ambient temperature,

pressure and humidity were recorded. The test subject was weighed

and his blood pressure and oral temperature were recorded. During

the experiments the test subject wore a sweat shirt, track shorts

and tennis shoes. The ear canal temperature was continuously moni-

tored and recorded throughout the duration of the experiment. At

the end of the experiment the subject's weight, blood pressure and

oral temperature were again measured and recorded.

Figure 3.4 shows the work programs for the experiments. In ex-

periments 1, 2, and 3 the temperature distribution on the skin sur-

face was measured using pad No. 2. Temperature distributions were

recorded for these experiments corresponding to activity levels of

sitting, standing and mild work, respectively.

Experiments 4, 5, and 6 were conducted using pads No. 1, 2,

and 3, respectively. In these experiments the steady state tempera-

ture distribution was recorded for a moderate work activity level

of 900 Btu/hr (264 w). In experiments 4, 5, and 6 the work load,

inlet water temperature and flow rate were maintained at an equal



Experiment Pad

1 2 Sitting 200 Btu/hr

2 2 Standing 300 Btu/hr

3 2 Work 600 Btu/hr

4 1 7t--- -- -- '4 1 Work 900 Btu/hr L Standing 300 Btu/hr

5 2 Work 900 Btu/hr Standing 300 Btu/hr

6 3 Work 900Btu/hr Standing 300 Btu/hr

7 2 Standing 300 Btu/hr 1800 Btu/hr Standing 300 Btu/hr

StStanng 30 / hr

A - - - - - - -or-k-- - -

, Work
8 Standing 300 Btu/hr 1800 Btu/hr Standing 300 Btu/hr

[ Work
-9-2 -- ---- ---- ---- -- - --- ---- ---

9 2 Standing 300 Btu/hr I Work 900 Btu/hr 1800 Btu/hr Work 900 Btu/hr Standing 300 Btu/hr-- -- -- - -- -- -- - Work 900dn Btu/h 1

--------r Work 1

10 3 Standing 300 Btu/hr . Work 900 Btu/hr 1800 Btu/hr Standing 300 Btu/hrWork 900 Btu/hr 1,
I I I I I I I

0 1 2 3 4 5 6 7 8 9
Time (hrs)

Figure 3.4 Work program for each experiment.
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level and held constant for each experiment.

In experiments 7 and 8, cooling pads No. 2 and 3 were used to

measure the course of change of the skin temperature distribution

resulting from a change in activity level. The temperature distri-

bution was recorded for a change from a steady state level at 300

Btu/hr (88 w) to an elevated level at 1800 Btu/hr (528 w). The

change in activity levels during experiments 8, 9 and 10 was

achieved by varying the load on the bicyle ergometer. Figure 3.5

shows the test subject pedaling the bicycle ergometer. The test

subject continued work at the 1800 Btu/hr (528 w) level until a

steady state skin temperature was achieved. At this point the

subject stopped working and the resulting transient temperature

profile was monitored as he returned to the 300 Btu/hr (88 w)

level.

Experiments 9 and 10 were also run with pads No. 2 and 3.

Here a similar approach was taken: The temperature distribution

was monitored for changes from 300 Btu/hr (88 w) to 900 Btu/hr

(264 w) and from 900 Btu/hr (264 w) to 1800 Btu/hr (528 w). The

skin temperature profile was recorded again as the test subject

decreased activity from 1800 to 900 Btu/hr and finally from 900 to

300 Btu/hr (528, 264, and 88 w, respectively).

3.4 THE TEST SUBJECT

The test subject was a caucasian male student of the University

of Illinois at Urbana-Champaign. The subject was in excellent physi-

cal condition. TABLE 3.2 illustrates his personal characteristics.
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Figure 3.5 General view of the set-up used for the experiments
with the individual cooling pads. A test subject
is shown pedalling the bicycle ergometer.
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TABLE 3.2 CHARACTERISTICS OF SUBJECT TEK

Subject Age Height Weight Surface Area

cm in. kg. lb. m 2  ft2

TEK 19 189 74.5 79.7 175.5 2.02 21.7

3.5 RECORDED AND CALCULATED QUANTITIES

3.5.1 Recorded Quantities

During the course of the experiments the following quanti-

ties were recorded using the corresponding instrumentation:

1. Temperature distribution on the skin surface between adjacent

tubes was measured with No. 30 copper-constantan thermo-

couples with ice water reference junction and a Leeds and

Northrup Speedomax W Potentiometer Recorder.

2. Differential temperature measurement for cooling pad

(T nle-T outlt) was made by thermopiles constructed of five

copper-constantan thermocouples in series mounted in special

plexiglas connectors and a Brush Mark 280 strip chart recorder

with high senstivity Brush Pre-Amplifier.

3. Inlet water supply temperature was taken with one copper-

constantan thermocouple with ice reference junction and a

Brush Mark 280 strip chart recorder with a high sensitivity

Brush Pre-Amplifier.

4. Ear canal temperature was measured with an ear thermistor

No. 510 and Yellow Springs Instrument Co. Tele-Thermometer

with a Brush Mark 220 recorder.

5. Flow rate was measured with a Fischer-Porter No. 48 Rota-

meter type flow meter.

6. Expired air flow rate was measured with a Parkinson-Cowan



34

dry gas meter. This flow was measured and collected con-

tinuously during transient conditions and periodically dur-

ing steady state conditions.

7. Oxygen content in expired air was obtained by a Beckman.

Paramagnetic 02 analyzer, model C2.

8. CO2 content in expired air was analyzed with a Godart-

Mijnhardt CO2 thermal conductivity type pulmo analyzer.

3.5.2 Calculated Quantities

1. Total metabolic rate was calculated from the volumetric flow

rate of the expired air and the oxygen and CO2 content ob-

tained from the analysis of this air. The caloric value of

oxygen was assumed at 5.0 Kcal/lit [27]. This value, al-

though slightly high, was confirmed by Shitzer, et al., [1] with

respiratory quotients found in their experiments. Maximum

deviation from the actual caloric value was assumed to be

at about 4 percent.

2. The rate of heat removed by each pad was taken as the prod-

uct of the difference between inlet and outlet temperatures

and the coolant flow rate. The specific heat of water was

assumed at 1 Btu/lb-oF or 1 Kcal/kg-oC.

3. For the determination of the rate of heat loss by respir-

ation; flow rate, temperature and enthalpy of expired air,

assuming it to be saturated, were used.

'83<
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4. RESULTS AND DISCUSSION

4.1 GENERAL RESULTS

The equipment functioned well throughout the research and the

test subject, although overstressed in experiments 9 and 10,

was able to complete all of the pre-designed test schedules. TABLE

4.1 outlines the experimental data pertaining to the test subject,

the environmental conditions, and each of the variations in the ten

experiments. As TABLE 4.1 indicates, the experiments were performed

in an environment with the following average conditions:

Pressure 29.35 Hg.

Relative humidity 42 percent

Temperature 71.5 0F

Throughout the duration of the ten experiments (approximately six

weeks) the test subject maintained an average weight of 176 lb (79.9 kg)

although a weight reduction of 1.5 to 3 pounds (0.68 to 1.36 kg)

were observed during each of the ten experiments due to loss of

body fluid. The test subject's blood pressure and oral temperature

remained normal before and after each of the experiments.

The test subject's thigh was cooled with a constant flow (40.5

lb/hr, 18.4 kg/hr) of water at 54.5 0F (12.500) during all experiments.

TABLE 4.2 shows the performance of each test pad for the various experi-

mental conditions. The test subject's metabolic rate shown is the

maximum steady state work load that was achieved for each of the

experiments. The heat removed by the cooling pad given in the table

corresponds to the maximum heat removed from the thigh at the highest

steady state work load. The steady state condition was assumed to

exist when the temperature profile on the skin surface between the

384<



TABLE 4.1

Experimental Conditions and Measured Data

(Water flow rates and inlet temperatures were identical for all experiments at 40.5 lb/hr and 54.5 0 F (12.50C))

Experiment Pad Weight, lb Blood Pressure Oral Temp, OF
Pressure Relative TemperatureNo. No. Before After Before After Before After
in. Hg. Humidity OF

1 2 176.83 175.25 120/80 120/80 98.5 97.6 29.38 42 72

2 2 177.66 177.52 120/80 120/90 98.2 98.4 29.32 41 72

3 2 176.40 175.60 125/80 125/80 98.4 98.2 29.38 43 71

4 1 179.68 177.34 120/65 120/90 97.6 98.0 29.32 40 73

5 2 178.36 176.60 120/80 120/80 97.8 98.2 29.30 41 72

6 3 176.06 175.12 120/80 120/80 97.8 98.4 29.50 43 73

7 2 175.71 174.12 115/60 120/70 97.7 98.6 29.52 40 72

8 3 176.54 174.09 120/80 120/80 97.6 98.2 29.44 42 70

9 2 173.36 170.39 110/80 120/80 98.3 98.5 29.30 43 73

10 3 175.92 172.50 110/80 110/80 98.4 98.0 29.41 43 72



TABLE 4.2

Heat Removed by Cooling Pads During Maximum Steady State Metabolic Rates

Maximum Steady State Heat Removed by Percent of Total
Experiment Pad Total Metabolic Rate of Pad During Steady

Subject State
Btu/hr w Btu/hr w

1 2 200 59 * -- *

2 2 320 94 148 44 46**

G3 2 600 176 183 54 30

A
4 1 900 264 185 54 20

5 2 900 264 190 56 21

6 3 900 264 208 61 23

7 2 1800 528 290 85 16

8 3 1800 528 300 88 17

9 2 1800 528 290 85 16

10 3 1800 528 300 88 17

*Steady state temperature profile was not attained.

**Questionable value.
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cooling tubes was fully developed and did not change as a function

of time.

4.2 TEMPERATURE DISTRIBUTIONS FOR SITTING, STANDING ND MILD WORK

Cooling pad No. 2 was used for experiments 1, 2, and 3. The

objective of these experiments was to investigate the nature of the

human thigh's response to cooling by a pad with a constant

water temperature and flow rate but for three activity levels.

Figure 4.1 illustrates the results of experiments 1, 2, and 3. For

each experiment there is one set of data consisting of two

lines. These approximately parallel lines represent the highest and

lowest temperatures which occured on the skin surface between two

adjacent cooling tubes. The higher temperature line represents a

point on the skin surface equidistant between the cooling tubes, and

the lower temperature line represents a point on the skin surface im-

mediately adjacent to the cooling tube. The difference between the

input water temperature and the temperature of the water that leaves

the pad is also plotted.

TABLE 4.3 summarizes the information which is presented in Fig.

4.1. As illustrated, a steady state condition was never achieved

in experiment No. 1. After three hours the temperature on the skin

surface of the thigh was still decreasing at a fairly steady rate of

1.35 0 F (0.750C) per hour. The metabolic rate of the sitting test

subject remained constant at 200 Btu/hr (59 w). It should be noted

that this measured value of 200 Btu/hr (59 w) is about 75 to 100

Btu/hr below average for a sitting individual.

In experiment No. 2 all of the experimental parameters remained
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Figure 4.1 Results of experiments 1, 2, and 3 using cooling pad No. 2
with constant experimental conditions and varying work load.



TABLE 4.3

Summary of the Results of Experiments 1, 2, and 3 with Pad No. 2

I Difference Be- Temperature Heat Re-
Highest Metabolic Rate Approximate Time

Experiment Reached by Subject to Reach Steady
and Lowest Tem- Pad,Tin-Tout Pad atNumber During Steady State State Temperature and Lowest - PadTn t Pad

Conditions peratures at at Steady Steady
Steady State State State

Btu/hr w OF OC OF OC Btu/hr w

1 200* 59 >180 --- --- --- ---

2 320 94 130 3.40 1.89 3.6 2.00 142 41**

3 600 176 90 4.50 2.50 4.7 2.61 185 54

*Steady state profile was not attained.
**Questionable value.
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the same as in experiment No. 1 with the exception of the test

subject's metabolic rate.The standing position was employed and

the resulting metabolic rate was 320 Btu/hr (94 w), 120 Btu/hr

(35 w) higher than in the case of sitting. This time the tempera-

ture distribution on the surface of the thigh did reach a steady

state in approximately 130 minutes. During the steady state con-

dition a maximum temperature difference of 3.40F (1.90C) was ob-

served on the skin surface. At the same time a total temperature

rise of 3.60F (2.00C) was recorded for the water supply. At a

work load of 320 Btu/hr (94 w) this temperature difference corre-

sponded to a heat removal rate of 142 Btu/hr (41 w).

An assumption was made that a mild work activity level would

correspond to twice the metabolic rate of standing. This mild

work was simulated by an activity level of 600 Btu/hr (176 w).

During experiment No. 3 the test subject reached a steady state

temperature distribution in 90 minutes while working at 600 Btu/hr

(176 w). The maximum temperature difference on the skin surface

during steady state was 4.50 F (2.50C). At steady state the heat

removed from the thigh by the cooling pad was 185 Btu/hr (54 w)

corresponding to a water temperature rise of 4.70 F (2.60C). It

should be noted that the highest temperature recorded between ad-

jacent tubes rose from 67.1 0 F (19.50C) at 320 Btu/hr (94 w) in ex-

periment No. 2 to 74.3 0 F (23.500C) at 600 Btu/hr (176 w) in

experiment No. 3.

At the beginning of experiments 1, 2, and 3 the cooling pad

was strapped on the subject's thigh while cooling water was flow-

ing through the pad. In later experiments the pad was placed on

the thigh and the subject was then allowed to rest for 30 minutes.

490<
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During this time the thigh came to equilibrium with no flow in the cool-

ing pad. Cooling fluid was introduced only after the thigh had reached

a steady state without cooling. This procedure was instituted in order

to gain some additional insight as to the course of change of the skin

temperature on the surface of the thigh during the onset of cooling.

4.3 COMPARISON OF THE SURFACE TEMPERATURE TRANSIENTS FOR THE
THREE PADS

During experiments 4, 5, and 6, cooling pads 1, 2, and 3 were

tested, respectively. During each of these experiments the inlet

water temperature was maintained constant at 54.50 F (12.5 0 C); the

flow rate was maintained constant at 40.5 lb/hr (18.4kg/hr) and

the activity level of the test subject was monitored and regulated

at 900 Btu/hr (264 w).

Figure 4.2 illustrates the result of experiments 4, 5, and 6

and these results are also summarized in TABLE 4.4. As is shown,

the cooling pad was placed on the test subject at t = 0. He was

allowed to rest for the first 30 minutes after which the cooling

fluid was introduced. The temperature profile on the skin surface

decreased afterward. The transient times to reach steady state were

90 minutes for pad No. 2 and 100 minutes for pads No. 1 and 3. It

is interesting to note that at steady state the temperature distri-

butions for pads No. 1 and 3 almost coincide while the temperature

profile for pad No. 2 is noticably lower by about 3.50F (20C). This

observation can be accounted for by the fact that pad No. 2 has a

higher cooling tube density than pads No. 1 and 3. This high tube

density is also reflected in a skin temperature differential of
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TABLE 4.4

Results of Experiments 4, 5, and 6 with Constant Metabolic Rate of 900 Btu/hr (257 w) Using Pads 1, 2, and 3

Highest Meta- Time to Highest Lowest
bolic Rate at Develop Skin Skin T - T AT Heat Removed
Steady State Steady State Temperature Temperature Pad by Pad

Temperature

Experiment Pad Btu/hr w Profile, min. OF OC OF OC 0 F OC OF OC  Btu/hr w

4 1 900 264 100 78.1 25.6 70.61 21.4 10.2 5.67 4.5 2.5 185 54

5 2 900 264 90 72.3 22.4 68.7 20.4 6.5 3.6 4.7 2.6 190 56

6 3 900 264 100 77.7 25.4 71.9 22.2 10.3 5.7 4.95 2.75 208 61

Di _
A
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only 3.60F (20C) for pad No. 2 while the differences between the high

and low skin temperatures for pads No. L and 3 are 5.670 F (3.150C)

and 5.760 F (3.20C), respectively. Consequently, while'pad No.

2 provided a lower skin temperature in general, it also provided a

more uniform skin temperature profile between the tubes. With a work

load of 900 Btu/hr (264 w), pad No. 3 removed the highest amount of

heat; i.e., 208 Btu/hr (61 w) corresponding to a cooling fluid tem-

perature difference of 4.95 0 F (2.750C).

4.4 COMPARISON OF THE STEADY STATE SKIN SURFACE TEMPERATURE DISTRI-
BUTIONS FOR THE THREE PADS

Steady state temperature distributions on the skin correspond-

ing to activity levels of 300 Btu/hr (88 w), 900 Btu/hr (264 w), and

1800 Btu/hr (528 w) are shown in Figs. 4.3, 4.4, and 4.5, respectively.

The results for pad No. 1 are shown in Fig. 4.4 alone since this pad

was used during experiment No. 4 only (mild work, 900 Btu/hr, TABLE

4.2).

All profiles shown in these figures resemble bell-shaped curves.

The same qualitative results have been obtained by Chato and co-workers

[7]. In general, the profiles obtained from pad No. 2 were the flat-

test and also lowest in temperatures. These results are due to the

higher tube density of pad No. 2 as compared to the other two pads.

Temperatures immediately underneath the cooling tubes could not

be accurately obtained with the present measuring technique. Thus,

only measured skin temperatures in the region not in contact with

the cooling tubes, i.e., < z/a < (2 - 8), are shown in Figs. 4.3,

L94<
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4.4, and 4.5. The profiles in these figures were extrapolated into

the areas covered by the cooling strips, too. The extrapolated values

could not be verified and should be treated as estimates only.

4.5 COMPARISON OF THE STEADY STATE SURFACE TEMPERATURE DISTRIBUTIONS
WITH ANALYTICAL RESULTS

Analytical expressions for the steady state temperature distri-

bution on the skin surface between adjacent cooling tubes for the

tissue modeled as a rectangular slab or a cylindrical shell are given

in Ref. [1] by Eqs. (5.1) and (E.2) (with r = R2), respectively.

Following is a list of parameters appearing in those equations that

affect the temperature distribution:

(1) Temperature of the inner core and the arterial blood,T1 = ,Ta,

(2) Specific heat of blood, cb,

(3) Thermal conductivity of the tissue, k,

(4) Ratio of cooling tube width to cooling tube spacing, B,

(5) Cooling tube spacing, 2a,

(6) Average heat flux at skin surface, f ,

(7) Number of terms used in the series computation, n,

(8) Depth of tissue, b,

(9) Shape of the flux function, f(z),

(10) Average rate of heat generated per unit volume of tissue,

qmD

(11) Average blood perfusion rate per unit volume of tissue,

wb , and, in the cylindrical model only due to the additional

degree of freedom,

(12) Radius of cylindrical shell, R1 or R2 .
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The first eight of these parameters and the radius of the cylin-

drical shell could either be measured or estimated with a fair degree

of accuracy. The remaining three, i.e., f(z), q., and Wb, were not

measured in the present work and were left to be estimated by the

method of fitting theoretical curves to the experimental data. Curve

fitting was done with the aid of a digital computer. Equations (5.1)

and (E.2) of Ref. [1] were programmed and temperature profiles were

computed for various combinations of the above three parameters.

The computer output was then analyzed to determine that combination

of parameters which yielded curves fitting closest with the experi-

mental data. Simultaneously, the parameters and the corresponding

temperature profiles were checked against the following criteria:

(1) The lowest temperature on the skin (immediately underneath

the cooling tube) should not be below the temperature of

the cooling water; in all experiments coolant temperature

was maintained at 54.5 0F (12.50 C).

(2) Blood perfusion and heat generation rates per unit volume

of tissue should not exceed values found in the literature.

(3) Only temperatures measured on the skin away from the cool-

ing tubes were considered for the comparison.

In addition, the following two assumptions were made:

(1) An estimated 25 to 30 Btu/hr (7.3 to 8.7 w) of the total

heat removed by the cooling pads were gained from the en-

vironment.
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(2) Some heat was removed through the air gap along the areas

not in contact with the cooling tubes. A parameter, r,

denoting the ratio of heat fluxes at the uncontacted to

that at the contacted areas was introduced. This ratio

was usually assumed at about 10 percent.

A large number of combinations of the above parameters over a

wide range were considered. Results for pads No. 2 and 3 at the high

metabolic rate of 1800 Btu/hr (528 w) are shown in Figs. 4.6 and 4.7,

respectively. In these figures comparison is made between the experi-

mental results and both the cylindrical and rectangular models. The

agreement between experimental and theoretical results is quite good,

particularly for pad No. 2. Also, as can be observed, no significant

differences exist between the cylindrical and rectangular models.

It should, however, be noted that the curves presented in Figs. 4.6

and 4.7 are not unique; nor are the parameters that yielded those

curves to be regarded as representing the true physiological values.

The only objective that we had in mind while attempting the fitting

of analytical curves to measured data was to explore whether a rea-

sonable correspondence could be obtained. Anything beyond this spe-

cific objective is not implied. Improved techniques for measuring

the unknown parameters and skin temperatures are required to render

the comparison between measured and analytically predicted results

more meaningful.

400<
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4.6 RESULTS OF TRANSIENT EXPERIMENTS

In experiments 7 and 8 the transient response due to a large

and sudden increase in metabolic rate was studied. As shown in

Fig. 4.8, the test subject stood for about three hours in order to

reach a steady state temperature distribution on the skin surface.

With the flow rate and input water temperature held constant, the

metabolic heat generation rate was then raised from 300 Btu/hr

(88 w) to 1800 Btu/hr (528 w). As can be seen, the transition in

metabolic rate from low to high activity level occurred in about

five minutes. The test subject maintained the 1800 Btu/hr (528 w)

activity level for 90 minutes. At this time he was allowed to rest

and his metabolic rate returned to 300 Btu/hr (88 w) in about ten

minutes.

The transient response of the skin surface temperature profile

corresponding to sudden change in the total metabolic rate was re-

corded for pads No. 2 and 3 in experiments 7 and 8, respectively.

Figures 4.9 and 4.10 show the results of experiment 7. Figure 4.9

shows the course of change of the temperature profile on the skin

surface between adjacent cooling tubes. The lowest curve at t = 0

represents the fully developed temperature profile at 300 Btu/hr

(88 w) and the highest curve at t = 40 min represents the fully de-

veloped profile corresponding to an activity level of 1800 Btu/hr

(528 w). The curves at t = 10 min and t = 20 min are plotted at the

intermediate stages and show the nature of the development of the

temperature profile.

403<
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Figure 4.10 shows the course of change of the temperature profile

as it changed with a decrease in metabolic rate from 1800 Btu/hr

(528 w) to 300 Btu/hr (88 w). In this case the highest curve at t = 0

represents the fully developed temperature profile at 1800 Btu/hr

(528 w). The lower curve at t = 120 represents the temperature pro-

file at steady state corresponding to a metabolic activity rate of

300 Btu/hr (88 w). The intermediate values at t = 20, 40, 60 and 80

minutes show the nature of the development of the lower temperature

profile.

In the case of the increasing metabolic rate the temperature

distribution reaches a steady state in 40 minutes for pad No. 2.

However, a decrease in the total metabolic rate over the same range

results in a transient time of 120 minutes to reach steady state for

the same pad. Thus, it takes about three times as long to reach steady

state when changing from a high to a low metabolic rate as compared

to changing from a lower to a higher rate for pad No. 2.

The results of experiment 8 (using pad No. 3) are shown in

Figs. 4.11 and 4.12. In these figures the same scheme was used to

present the data as in Figs. 4.9 and 4.10. Figure 4.11 represents

the change in the temperature profile for an increasing metabolic

rate and Fig. 4.12 represents the change for a decreasing metabolic

rate. Again, the metabolic rates ranged from 300 Btu/hr (88 w)

at the low end to 1800 Btu/hr (528 w) at the high end. TABLE 4.5

summarizes the results of experiments 7 and 8 and can be used to

compare the performance of pads No. 2 and 3.

The temperature profile develops slightly faster for pad No. 2

at 40 minutes as compared with a time of 60 minutes for pad No. 3

4K7<
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TABLE 4.5

Results of Experiments 7 and 8

(Flow rate and water temperature remained constant)

Change in Change in Time to Reach
Experiment Pad Metabolic Rate Metabolic Rate Steady State

Btu/hr w Profile, Min.

7 2 300 - 1800 88 + 528 40

8 3 300 + 1800 88 + 528 60

7 2 1800 - 300 528 + 88 120

8 3 1800 - 300 528 + 88 120

for an increasing metabolic rate. The time for the temperature

profile development was equal for both pads in the case of a de-

creasing metabolic rate. Comparison of Figs. 4.9 and 4.11 re-

veals that the temperature profile is both lower and flatter for

pad No. 2 as compared with pad No. 3. Also, the profile was shifted

about 12.5 0 F (70C) for pad No. 2 compared with a 160 F (90C) shift for

pad No. 3, for the case of increasing and decreasing metabolic

rates.

In general then, pad No. 2 provided a lower, more uniform

temperature distribution. This temperature distribution also

proved to be more stable and did not shift as much as in the case

of pad No. 3 under identical conditions of change. This probably

is the major factor in accounting for a smaller time constant for

pad No. 2 as compared with pad No. 3.

The results for experiments 9 and 10 are shown in Fig. 4.13.

As illustrated in Fig. 4.13, the skin temperatures were monitored

410<
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for pads No. 2 and 3 for several transient metabolic conditions.

The transient intervals analyzed were.as follows: increasing meta-

bolic rates for pads No. 2 and 3 from:

1. 300 Btu/hr (88 w) to 900 Btu/hr (264 w),

2. 900 Btu/hr (264 w) to 1800 Btu/hr (528 w)

and reversed sequence of decreasing metabolic rates for pads No. 2

and 3 from.

3. 1800 Btu/hr (528 w) to 900 Btu/hr (264 w)

4. 900 Btu/hr (264 w) to 300 Btu/hr (88 w).

Again, it can be noted that the test subject required very little

time to reach a steady metabolic rate for each new activity. This

fact supports the initial assumption that changes in metabolic rates

can be regarded as step functions as compared to changes in tempera-

ture.

There are relatively short duration increases in temperature

occurring at the beginning of some of the work loads, particularly

after a reduction in metabolic rate. The rapidity of this change

indicates a physiological response of some kind, such as a sudden

reduction in blood flow.

Figure 4.14 shows the course of change for the temperature pro-

file reacting to changes from low to moderate and to high metabolic

activity levels for pad No. 2. Figure 4.15 shows the nature of the

temperature distributions as the metabolic rate decreases from high

to low.
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Figure 4.14 Development of temperature profile on the skin for pad
No. 2 resulting from increases in metabolic rates from
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The results of experiment 10 are shown in Figs. 4.16 and 4.17.

In this case pad No. 3 was tested and the temperature distributions

were measured in accordance with changes in metabolic activity.from

low to high and from high to low. The results of experiments 9 and

10 are presented in summary form in TABLE 4.6. It can be seen that.

both pads No. 2 and 3 required a time of 80 minutes to reach a steady

state temperature distribution in accordance with an increase in meta-

bolic activity from 300 to 900 Btu/hr (88 w to 264 w). Similarly,

pads No. 2 and 3 also required an additional time of sixty minutes

to reach steady state with an increase in metabolic rate from 900

Btu/hr to 1800 Btu/hr (264 w to 528 w).

TABLE 4.6

Results of Experiments 9 and 10

(Flow rates and input water temperatures held constant)

Change in Change in Time to Reach
Metabolic Rate Metabolic Rate Steady State

Experiment Pad Btu/hr w Profile, min.

9 2 300 + 900 88 - 264 80

10 3 300 - 900 88 - 264 80

9 2 900 - 1800 264 - 528 60

10 3 900 ' 1800 264 - 528 60

9 2 1800 - 900 528 - 264 40

10 3 1800 - 900 528 + 264 80

9 2 900 - 300 264 + 88 80

10 3 900 ' 300 264 + 88 60
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In response to a decrease in metabolic activity, it was noted

that pad No. 3 required 80 minutes to reach steady state, whereas

pad No. 2 required only 40 minutes to reach the same level.

For the transition from 900 Btu/hr (264 w) to 300 Btu/hr (88

w), it can be seen that pad No. 3 required less time (60 minutes)

than did pad No. 2 which required 80 minutes to reach steady state.

It should be noted, however (see Fig. 4.15), that, in the case of

pad No. 2, the lowest temperature was reached in approximately 40

minutes. During the remaining 40 minutes of the development of the

steady state temperature profile, only the middle or warmer portion

of the distribution was affected.

Again, some general comments can be made with respect to pad

No. 2 in that it provided a lower, more uniform temperature distri-

bution than did pad No. 3. Also, there was less of a range of tem-

perature variation in the case of pad No.. 2 as compared with pad No.

3. All of these observations can be accounted for by the higher tube

density of pad No. 2 and the corresponding increase in cooling effec-

tiveness.
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5. SUMMARY AND CONCLUSIONS

Three separate cooling pads with different cooling tube sizes

and spacings were constructed and tested. These pads were equipped

with thermocouples and were used to measure the temperature profiles.

on the skin surface of the right thigh between adjacent cooling tubes.

All pads were tested under the same experimental conditions with equal

coolant flow rate and temperature. Pad No. 2 which consisted of 5/32.

in. tubes spaced at 5/8 in. intervals provided the best cooling ca-

pacity. Pad No. 2 removed 15 percent of the total heat generated

at high metabolic rates and much higher percentages at low metabolic

rates. Pad No. 2 provided the lowest and most uniform skin tempera-

ture profiles throughout the tests. Also, the temperature profiles

on the skin did not shift as much with changes in metabolic rate for

pad No. 2 than with pads No. 1 and 3. The time constants for surface

temperatures associated with changes in metabolic rate were also small-

est for pad No. 2. In general, it can be concluded that pad No. 2

provided a lower, much more uniform and stable temperature distribu-

tion on the skin surface than was attainable with pads No. 1 and 3.

Times required for reaching a steady state from the onset of

a change in activity level were also recorded. When an increase in

metabolic rate was introduced, the times involved were found to be

between 40 to 60 minutes, the shorter periods pertaining to pad No.

2 with the higher density of tubes. When the change in activity level

was reversed, i.e., high (1800 Btu/hr, 528 w) to low (300 Btu/hr,

88 w), times for reaching a steady state temperature profile were

about equal for pads No. 2 and 3 at 120 minutes. Thus, a ratio of
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about 2-3 was found between the lengths of time required. for. the de-

velopment of temperature profiles for extreme, opposite changes.in

levels of activity. When intermediate changes were used (experiments.

9 and 10),the ratios of transient times were found to be of the or-

der of 1-1.5. Overall transient times.for these double-step changes

were of the same order (~ 140 min) for both increasing and decreas-

ing metabolic rates.

It is clear that both tube size and spacing have a noticeable

effect on overall cooling efficiency. In order to optimize the re-

lationship between these two parameters then, a definition of maxi-

mum metabolic rate should be secured. Once obtained, a cooling pad

can be designed that will remove heat from the body at any predeter-

mined rate.

A time dependent analytical solution has been obtained for the

biothermal model in cylindrical coordinates. Equation (2.18) is the

solution as a function of r, z, and t and was used to predict the tran-

sient temperature distributions on the skin surface between adjacent

cooling tubes and for the one-dimensional geometry (uniform cooling

of the skin).

A comparison between steady state measured and analytical results

was attempted. The comparison was made with both the cylindrical

and rectangular models of Ref. [1]. Agreement between measured and

predicted results was found to be fair, particularly for pad No. 2.

Improved techniques for measuring skin temperatures and physiologi-

cal quantities, e.g., blood perfusion and metabolic heat generation

rates, are required to render the comparison more meaningful and reliable.
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ABSTRACT

A linear combination of modified Bessel functions is defined,
discussed briefly, and tabulated; namely,

k(A)x) = Ik(Xx) K (Xx ) - (-1) k +  I (Ax ) I K(x)

This combination was found to recur in The analysis of various heat
transfer problems and in the analysis of the thermal behavior of liv-
ing tissue when modeled by cylindrical shells.

P
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1. INTRODUCTION

Many physics and engineering problems are amenable to solutions

in terms of Bessel functions. These functions have been extensively

studied and tabulated. A hitherto undefined linear combination of

modified Bessel functions was found to recur in the analysis of nu-

merous engineering problems dealing with diffusion phenomena. Some

examples in heat transfer are: steady heat flow in thin rods, taper-

ing fins and thin fins around cylinders, electrical transmission lines,

Laplace transforms applied to flow of heat in cylinders, and the model-

ing of living tissue by the "bio-heat" equation. This combination of

Bessel functions is defined, discussed, and tabulated in this paper.
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2. ANALYSIS

Consideration of a steady state energy balance in a heat

generating material whose heat source is linearly dependent on the

temperature leads to the following equation:

V2T - X2T = 0 (1)

where T is the temperature of the medium and 12 is the ratio of the

strength of the source per unit time, degree and unit volume to the

conductivity of the medium. In many cases, and for cylindrical

geometries in particular, Eq. (1) may yield the following equation [1,21*

Y" + 1 y, _ ( 2 + 2/x ) Y = 0 (2)x

Equation (2) is referred to as the modified Bessel equation of order v.

If v is an integer, the following linear combination of modified

Bessel functions is found to recur in the solution of Eq. (2):

(x) Ik(x) K(Ax ) - (-1) k + k I (x Kk(x) (3a)

or

Ik (x) (-) k+  Kk(Ax)

Tk (Ax) (3b)

I(Xxl ) KP (xl )

This shorthand definition of the linear combination of modified Bessel

functions simplifies the analysis of the problems considerably. Further-

more, it was observed that the function defined in Eqs. (3a) or (3b)

*Numbers in brackets refer to entries in REFERENCES.
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exhibits a few interesting characteristics that render the above defi-

nition even more useful. These characteristics are:

(a) By definition, the function YIk(Ax) satisfies the modified

Bessel equation of order k,

Id kR X2 k -2 ) (Ax) = 0 (4)
x dxI' dx x2 kR

(b) This function obeys the same differentiation rule as does

the modified Bessel function of the first kind.

x T1 (x) = kW1 (x) + Ax k+) (Ax) (5)

Therefore, it is not a so-called cylinder function.

(c) For two consecutive indices the following identity is ob-

tained [3 (p. 375)].

T1 (Ax)E -1 (6)
k(k+l) 1 Ax

(d) When the indices are reversed in order, the following ex-

pression is obtained:

1(Xx) (-1)k+k+l j (Ax.) (7)

(e) For identical indices the following result is obtained

Tkk(I1 x) = 0 (8)

The above list of characteristics is not an exhaustive one.
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When plotted on semi-log coordinates,.the function TY(k+l)(Ax)

appears to behave as two straight lines as shown in Figs. 1 and 2.

Also, the absolute magnitudes of the slopes of these lines seem to

be identical. These characteristics suggest the approximation of

the function by an exponential expression of the kind

7 (Xx) = exp U(Xx ) + SAx (9)
k(k+l) 1

for

5 < Ax < X2

and

Xx > X

where X2 < A x1 and X > A x,. The branches are symmetrical with re-

spect to Xx = Axi with slopes of S = -0.43 and S = 0.43, respectively.

For the right-hand branch, i.e., Ax > X , U is about -0.5Xx 1, whereas

for the left-hand branch U is of the order of 0.4x 1 .

Figures 3 and 4 show the function for repeated subscripts 0 and 1.

A simple computer program was written for the purpose of computing

the function Y~'(Ax) = TI(X). Results for the first four combinations

of indices are given in the tables. Values of the arguments,

X as well as Xl, in the tables are for the range 0.01 to 100.

430<
4



3. ACKNOWLEDGMENT

Numerical computations were carried out on the IBM 360/75

computer at the Computer Science Laboratory of the University of

Illinois at Urbana-Champaign.

REFERENCES

1. McLachlan, N. W., Bessel Functions for Engineers, Oxford Uni-
versity Press, London, 1948.

2. Shitzer, A., "A Study of the Thermal Behavior of Living Biologi-
cal Tissue with Application to Thermal Control of Protective
Suits," Ph.D. Thesis, University of Illinois at Urbana-Champaign,
1971. Also Technical Report No. ME-TR-207, Department of Mechani-
cal and Industrial Engineering, University of Illinois at Urbana-
Champaign, 1971.

3. Abramovitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
Dover Publications, New York, 1965.

LIST OF FIGURES

Figure 1 The function T1 (Xx) drawn on semi-log coordinates.

Figure 2 The function I 2(Xx) drawn on semi-log coordinates

Figure 3 The function T (Xx)

Figure 4 The function T1 (Xx)

431<
5



24-

22

20
Xx 0.5

18- 1.0/

5.0
16

10
14

12

0 10 20

0O_j

8

6-
30

4

2
40

0 1 /Xx
50

-2
0 10 20 30 40 50

Xx

Figure I The function 1I (Ax) drawn on semi-log coordinates

432<
6



24-

22-

20 x = 0.5/
1.0

18 /
5.0

16

10
14

12

S20

40
0 1/Xx5

-2 11 1 1 1
0 10 20 30 40 50

Xx

Figure 2 The function T 2 (Xx) drawn on semi-log coordinates

7 433<



600 I I

500-

400

Xx1 =0.5

300 1.0 2.5 5.0 10.0 15.0

0O

200-

100-

Xx1 
= 5.0 10.0 15.0 20.0 25.0 30.0

-100

0 5 10 15 20 25
Xx

Figure 3 The function ' o(Xx)

434<
8



600 I I I

500-

400

Xxz =0.5

1.0 2.5 5.0 10.0 15.0
300

300 -
'-4-

200

0-

100 -

Xx1= 5.0 10.0 15.0 20.0 25.0 30.0
-100

0 5 10 15 20 25
Xx

Figure 4 The function M" (Ax)
11

435<
9



TABLES OF THE FUNCTION

L(X) IK(X) (X) - (-) K+ L IL(XI) K(X)
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XI= 0.01 XL= 0.05

X K=u,L=O K=O,L=1 K=L=L=2 K=,L=2 K=OL=O K=O,L=1 K=1tL=1 K=1,L=2

0.01 0.0 0.100000E 03 0.0 0.999999E 02 -0.16098dE 01 0.200282E 02 -0.240058E 01 0.402879E 01
0.05 0.iboLvdE i1 0.100052E 03 0.240058E 01 0.500144E 03 0.0 0.200000E 02 0.0 0.200000E 02

0.10 U.23u592L 01 0.100236E 03 0.495567E 01 0.100123E 04 0.693436E 00 0.200201E 02 0.750304E 00 0.400280E 02
0.2u 0.3ui582E ul G.100985E 03 0.100236E 02 0.20099bE 04 0.139165E 01 0.201530E 02 0.188150E 01 0.803518E 02
0.30 0.3'45557E 01 0.102243E 03 0.151501E 02 0.303380E 04 0.181138E 01 0.203944E 02 0.294374E 01 0.121280E 03
0.40 0.3791+3E 01 0.104018E 03 0.203864E 02 0.408043E 04 0.212482E 01 3.207419E 02 0.400747E 01 0.163120E 03
0.5o 0.409o51E ul 0.106325E 03 0.257744E 02 0.515775E 04 0.238693E 01 0.211967E 02 0.509316E 01 0.206187E 03
0.60 0.431e2oE 01 0.109180E 03 0.313557E 02 0.627392E 04 0.262287E 01 0.217616E 02 0.621315E 01 0.250807E 03
0.70 0.460/UOE 01 0.112604E 03 0.37173CE 02 0.743740E 04 0.284663E 01 0.224408E 02 0.737772E 01 0.297318E 03
0.80 0.t'92u3t 01 0.110624E 03 0.432708E 02 0.865707E 04 0.306709E 01 0.232390E 02 0.859663E 01 0.346075E 03
0.90 0.52-oobE 01 0.121269E 03 0.4S6960E 02 0.994227E 04 0.329048E 01 0.241622E OZ 0.987969E 01 0.397452E 03

1.Ou 0.55Do37E 01 0.126576E 03 0.564981E 02 0.113029E 05 0.352153E 01 0.252175E 02 0.112371E 02 0.451844E 03
2.00 0.IOo4bbE 02 0.227899E 03 3.159021E 13 0.318119E 05 0.698519E 01 0.453885E 02 0.316655E 02 0.127171E 04
3.00 0.230087E u2 0.487952E 03 0.395233E 03 0.790654E 05 0.151652E 02 0.971757E 02 0.787092E 02 0.316072E 04
4.00 0.533479E 0~ U.112990E 04 0.975691E 03 0.195184E Ob 0.351856E 02 0.225018E 03 0.194307E 03 0.780269E 04
5.00 0.12bboiE 03 0.272327E 04 0.243292E 04 0.486700E 06 0.848274E 02 0.542335E 03 0.484513E 03 0.194563E 05
6.Ou 0.317.8E 03 0.672168E 04 0.613259E 04 0.122681E 07 0.209382E 03 0.133861E 04 0.122129E 04 0.490428E 05
7.00 0.795972E 03 0.1b8550E 05 0,155998E 05 0.312070E 07 0.525040E 03 0.335664E 04 0.310668E 04 0.124753E 06

A 8.30 U.2uoo3 04 0.427452E 05 0.399767E 05 0.799724E 07 0.133153E 04 0.851263E 04 0.796131E 04 0.3196981 06
9.Ou 0.51b6u9E u4 0.09S330E 06 0.103064E 06 0.206177E 08 0.340568E 04 0.217729E 05 0.205251E 05 0.824215E 06

10.06 0.13e937L ub 0.281498E 06 0.267029E 06 0.534184E 08 0.876879E 04 0.560599E 05 0.531784E 05 0.213545E 07
20.0, 0.20>o49E 09 0.435468E 10 0.424439E 10 0.849078E,12 0.135350E 09 0.867228E 09 0.845264E 09 0.339428E 11
30.00 0.3iV4oE li 0.781467E 14 0.768331E 14 0.153703E 17 0.243430E 13 0.155628E 14 .0.153012E 14 0.614441E 15
40.JJ 0.7uIL 17 0.14b909E 19 0.147035E 19 0.294141E 21 0.463857E 17 0.296549E 18 0.292819E 18 0.117586E 20
50.Ju 0.1i36ob3E 2 0.293178E 23 U.290232t 23 0.580601E 25 0.913264E 21 0.583860E 22 0.577992E 22 0.232101E 24
60.0j 0.27o273t 2o C.589253L 27 0.584322E 27 0.116d892E 30 0.183555E 26 0.117349E 27 0.116367E 27 0.467288E 28
70.uu 0.5u7299L 3u 0.120127E 32 0.119266E 32 0.238569E 34 0.374202E 30 0.239232E 31 0.237517E 31 0.953783E 32
80.Ju U.llo~bE nJ U.247453E 36 0.24590iE 36 0.491920E 38 0.770828E 34 0.492799E 35 0.489710E 35 0.196650E 37
90.35 0.242u36E -5 0.513789E 40 0.510927E 40 0.102210E 43 J.160048E 39 0.102320E 40 0.101750E 40 0.408593E 41

100.00 J.uuh946 t1 0.107347E 45 0.106809E 45 0.213669E 47 0.334391E 43 0.213780E 44 0.212709E 44 0.854161E 45



Xl= 0.10 Xl= 0.20

X K=U,L=0 K=OtL=1 K=1 L=1 K=ItL=2 K=0,L=O K=0,L=1 K=1tL=1 K=1,L=2

0.01 -0.230592E 01 0.100904E 02 -0.495567E 01 0.112260E 01 -0.301582E 01 0,525058E 01 -0.100236E 02 0.749102E 00
0.05 -0.693436E 00 0.100159E 02 -0.750304E 00 0.501406E 01 -0.139165E 01 0.509194E 01 -0.188150E 01 0.133808E 01

0.10 0.0 0.999999E 01 0.0 0.100000E 02 -0.694311E 00 0.503184E 01 -0.751221E 00 0.252815E 01
0.20 u.694311E 00 0.100404E 02 0.751221E 00 0.200562E 02 0.0 0.500000E 01 0.0 0.499999E 01
0.30 0.110609E 01 0.101455E 02 0.134177E 01 0.302673E 02 0.406141E 00 0.502196E 01 0.417356E 00 0.752605E 01
0.4J 0.140761E 01 0.103077E 02 0.190109E 01 0.407068E 02 0.697813E 00 0.508093E 01 0.754897E 00 0.101128E 02
0.50 0.165441E 0l C.105257E 02 0.245832E 01 0.514530E 02 0.930281E 00 0.517206E 01 0.106522E 01 0.127773E 02
0.6u 0.187100E 01 0.107998E 02 0.302596E 01 0.625868E 02 0.112871E 01 0.529371E 01 0.136730E 01 0.155388E 02
0.70 0.207144E 01 0.111315E 02 0.361186E 01 0.741927E 02 0.130693E 01 0.544556E 01 0.167053E 01 0.184179E 02
0.80 0.22o445E 01 0.115229E 02 0.422224E 01 0.863593E 02 0.147354E 01 0.562805E 01 0.198074E 01 0.214365E 02
0.90 0.245o04E 01 0.119769E 02 0.486273E 01 0.991795E 02 0.163439E 01 0.584209E 01 0.230225E 01 0.246175E 02

1.OJ 0.26075E ul 0.124967E 02 0.553886E 01 0.112752E 03 0.179379E 01 0.608901E 01 0.263869E 01 0.279854E 02
2.00 0.541853E 01 0.224684E 02 0.156669E 02 0.317338E 03 0.388040E 01 0.108987E 02 0.758277E 01 0.787569E 02

L 3.00 0.11d112E 02 0.480963E 02 0.389539E 02 0.788713E 03 0.851949E 01 0.233140E 02 0.188771E 02 0.195741E 03
4.00 0.274193E u2 0.111368E 03 0.961676E 02 0.194705E 04 0.197976E 02 0.539788E 02 0.466097E 02 0.483215E 03
5.00 0.661092E 02 0.268417E 03 0.239799E 03 0.485504E 04 0.47,396E 02 0.130097E 03 0.116226E 03 0.120491E 04
6.00 0.163181E 03 0.662517E 03 0.604453E 03 0.122379E 05 0.117841E 03 0.321109E 03 0.292967E 03 0.303719E 04

A 7.00 0.409188E 03 0.166130E 04 0.153758E 04 0.311304E 05 0.295494E 03 0.805199E 03 0.745237E 03 0.772586E 04
8.00 0.103772E 04 0.421314E 04 0.394028E 04 0.797760E 05 0.749391E 03 0.204203E 04 0.190978E 04 0.197986E 05
9.00 0.265421E 04 0.107760E 05 0.101585E 05 0.205671E 06 0.191673E 04 0.522294E 04 0.492361E 04 0.510430E 05

10.0j 0.663393E 04 0.277456E 05 0.263195E 05 0.532872E 06 0.493511E 04 0.134478E 05 0.127565E 05 0.132247E 06
20.Ou 0.105719E 09 0.429215E 09 0.418345E 09 0.846993E 10 0.763445E 08 0.208033E 09 0.202764E 09 0.210205E 10
30.00 0.189717E 13 0.770246E 13 0.757300E 13 0.153325E 15 0.137004E 13 0.373324E 13 0.367049E 13 0.380519E 14
40.00 0.3615uE 17 0.14b771E 18 0.144924E 18 0.293418E 19 0.261061E 17 0.711369E 17 0.702421E 17 0.728199E 18
50.00 u.71149E 21 0.288969E 22 0.286065E 22 0.579176E 23 0.513989E 21 0.140058E 22 0.138650E 22 0.143738E 23
bO.Ou 0.14u3L 20 0.58U792E 26 0.575932E 26 0.116605E 28 0.103305E 26 0.281499E 26 0.279144E 26 0.289388E 27
70.J, O.Z91o33E 30 C.118403E 31 0.117554E 31 0.238003E 32 0.210603E 30 0.573875E 30 0.56976LE 30 0.590670E 31
80.00 0.o0u142L 34 C.243900E 35 0.242371E 35 0.490712E 36 0.433825E 34 0.118214E 35 0.117473E 35 0.121784E 36
9
0.uj 0.12q733L 39 0.506412E 39 0.503591E 39 0.101959E 41 0.900755E 38 0.245449E 39 0.244081E 39 0.253039E 40

100.0) 0.2buoObE 41 6.105806E 44 0.105275E 44 0.213144E 45 0.188196E 43 0.512820E 43 G.510250E 43 0.528976E 44



X1= 0.30 Xl= 0O40

x K=,,L= K=OL=1 K= ,L=1 K=IL=2 K=CL=O K=O,L=1 K=1,L=1 K=IL=2

0.01 -0.345557E 01 0.377225E 01 -0.151501E 02 0.124189E 01 -0.379743E 01 0.314766E 01 +0.203864E 02 0.208645E 010.05 -0.Ib1138E 01 0.353031E 01 -0.294374E 01 0.769481E 00 -0.212482E 01 0.282110E 01 -0.400747E 01 0.704530E 00
0. J -O.ll0to9L ul U.343180E 01 -0.134177E 01 0.120033E 01 -0.140781E 01 0.268500E 01 -0.190109E 01 0.802284E 000.20 -0.4Col4IL 0j 0.335250E 01 -0.417356E 00 0.223959E 01 -0.697813E 00 0.256384E 01 -0.754897E 00 0.130645E 010.3u 0.0 0.333333E l01 0.0 0.333333E 01 -0.288163E 00 0.251379E 01 -0.292151E 00 0.188777E 010.40 0.283 i3k GO 0.334852E 01 0.292151E 00 0.446146E 01 0.0 0.249999E 01 0.0 0.249999E 010. 0.514L51E ,u C.339022E 01 0.536851E 00 0.562b87E 01 0.223513E 00 0.251162E 01 0.225374E 00 0.313766E 010.oj 0.70,o72E (j 0.345522L 01 0.761045E 00 0.683648E l01 0.408L79E 00 0.254404E 01 0.419427E 00 0.380224E 010.70 .d7u339Et Ou C.354216E 01 0.977139E 00 0.809869E 01 0.568088E 00 0.259500E 01 0.598030E 00 0.449734E 01O.o O.IUZ5LE 01l C.365C61E 01 0.119210E 01 0.942272E 01 0.711923E 00 0.266342E 01 0.769702E 00 0.522755E 010.90 0. Iu703t 01 0.378070E 01 0.141052E 01 0.108185E 02 0.845508E 00 0.274889E 01 0.939706E 00 0.59980 E 01

1. u U.13o70tE i1 0.393295E 01 0.163582E 01 0.122966E 02 3.973031E 00 0.285143E 01 0.111170E 01 0.681462E 012.Ou u.3uiZ7E O1 0.698367E 01 0.483975E 01 0.345911E 02 0.242216E 01 0.500265E 01 0.344597E 01 0.191482E OZ3.0u 0.660316E i01 0.149209E 02 0.120754E 02 0.859693E 02 0.540363E 01 0.106685E 02 0.862735E 01 0.475847E 024.0u 0.1500OE 02 0.345403E 02 0.298229E 02 0.212227E 03 0.125847E 02 0.246896E 02 0.213156E 02 0.117468E 035.00 0.37JdI8E 02 0.32452E 02 0.743687E 02 0.529195E 03 0.303557E 02 0.595021E 02 0.531566E 02 0.292910E 03I 6.00 u.922751E 02 0.205468E 03 0.187460E 03 0.133392E 04 0.749333E 02 0.146864E 03 0.133992E 03 0. 738329E 037.00 0.23138dE 03 0.515221E 03 0.476853E 03 0.339318E 04 0.187902E 03 0.368268E 03 0.340844E 03 0.187813E 048.00 U.586u13E 03 0.130663E 04 0.122200E 04 O.8b955OE 04 0.476531E 03 0.933948E 03 0.873460E 03 0.481297E 04A 9.00 0.150090E u4 0.334199E 04 0.315046E 04 0.224180E 05 0.121883E 04 0.238878E 04 0.225188E 04 0.124084E 05
0.0 0.3ooc,5t u4 0.860480E 04 0.816250E 04 0.580825E 05 0.313819E 04 0.615051E 04 0.583437E 04 0.321487E 0520.00 0.59186bE 0d 0.133113E 09 0.129742E 09 0.923214E 09 0.485468E 08 0.951464E 08 0.927366E 08 0.S11000E 0930.00 U.0L7itic 13 G.238878E 13 0.234863E 13 0.167123E 14 0.871194E 12 0.170744E 13 0.167874E 13 0.925027E 1340.u00 0.20424E 1I 0.455182E 17 0.449457E 17 0.319823E 18 0.166006E 17 0.325354E 17 0.321261E 17 0.177022E 1850.0 u.

4
62tdOE Z 0.896185E 21 0.887178E 21 0.631295E 22 0.326841E 21 0.640572E 21 0.634134E 21 0.349423E 2260.01 J.d~ov37E 25 l.180122E 2b 0.1786L5E 26 0.127098E 27 0.656910E 25 0.128747E 26 0.127670E 26 0.703491E 2670. j 0.16'YIjE J 0 L.367204E 30 0.364572E 30 0.259421E 31 0.133920E 30 0.262469E 30 0.260588E 30 0.143590E 3180.ju, .337wuE 3q 0.756412E 34 O.751670E 34 0.534871E 35 0.275865E 34 0.540665E 34 0.537276E 34 0.296052E 35

9
0.uO 0.NI0339L 3o 0.157055E 39 0.156180E 39 0.111134E 40 0.572782E 38 0.112259E 39 0.1116 34E 39 0.615128E 39100.u O 0.1473 8E 3 C.328137E 43 0.326493E 43 0.232325E 44 0.119672E 43 0.234545E 43 0.233369E 43 0.128592E 44



Xl= 0.50 Xl= 0.60

X =OUL=O K=0,L=1 K=1,L=1 K=1tL=2 K=O,L=O K=O,L=1 K=1,L=l K=1,L=2

0.01 -0.409651E U0 0.287406E 01 -0.257744E 02 0.322753E 01 -0.437826E 01 0.278394E 01 -0.313557E 02 0.466091E 010.05 -0.23d693E 01 0.246062E 01 -0.509316E 01 0.824053E 00 -0.262287E 01 0.228059E 01 -0.621315E 01 0.105116E 01
J3.I -0.16544E ul C.28651E 01 -0.245832E 01 0.692379E 00 -0.187100E 01 0.206747E 01 -0.302596E 01 0.713211E 00O.20 -0.0iu3blL Ou 0.212505E 0l -0.106522E 01 0.911181E 00 -0.112871E 01 0.186572E 01 -0.13b730E 01 0.736033E 000.30 -0.51:251t uO C.2047d6E 01 -0.536851E 00 0.124282E 01 -0.703672E 00 0.176286E 01 -0.761045E 00 0.918410E 00O.0J -0.2313E J2 C.20079 01 -0.225374E 00 0.o1013E 01 -0.408179E 00 0.170510OE 01 -0.419427E 00 0.114596E 010.50 0.u 0.199999E 01 0.0 0.200000E 01 -0.182625E 00 0.167553E 01 -0.183638E 00 0.139730E 01J.bO u.i2o5E u 0.200942E 01 0.1 E33E 00 0.241009E 01 0.0 0.166666E 01 0.0 0.166666E 01.70 0.j3d 7 t 00 C.203599E 01 0.345134 E 0 0.284127E 01 0.154407E 00 0.167459E 01 0.155020E 00 0.195283E 01.dJ O.4771IuE j0 .207806E 01 0.494766E 00 0.329570E 01 0.289606E 00 0.169712E 01 0.293607E 00 0.225635E 010.90 0.ou3b75E ou G.213479E 01 0.638o70E 0 C 0.377625E 01 0.411590E 00 0.173300E 01 0.422894E 00 0.257866E 01
1.OJ 0.722622L O0 C.220574E 01 0.780924E 0) 0.428626E 01 0.524616E 00 0.178155E 01 0.547488E 00 0.292169E 012.uu O.I19dilE 01 0.380537E 01 0.259872E 01 0.120140E 02 0.164805E 01 0.300565E 01 0.202846E 01 0.815102E 013.00 0.447495E 1l 0.809310E 01 0.653816E 01 0.298499E 02 0.375698E 01 0.636976E 01 0.513799E 01 0.202443E 024.00 0.104358E 02 0.187238E 02 0.161627E 02 0.73861E 02 0.877530E 01 0.147280E 02 0.127110E 02 0.499720E 025.00 0.251771t 02 0.451221E 02 0.403094E 02 0.183738E 03 0.211755E 02 0.354901E 02 0.317039E 02 0.124606E 036.00 0.621514E u2 0.111370E 03 0.101609E 03 0.46314ZE 03 0.522748E 02 0.875956E 02 0.799179E 02 0.314089E 037.00 0.155851E 03 0.279265E 03 0.258469E 03 0.117812E 04 0.131085E 03 0.219650E 03 0.203293E 03 0.798967E 038.00 0.395i47E 03 0.708233E 03 0.662363E j03 0.301910E 04 0.332439E 03 0.557044E 03 0.520967E 03 0.204747E 049.J 0.0i0U93L u' 0.181146E 04 .110765E 04 0.778358E 04 0.850287E 03 0.142476E 04 0.134311E 04 0.527859E 04

I1J. u0 C.2c29ut U4 0.46o4JoE 04 J.442432E 04 0.20164E 05 J.218928E 04 0.3b6841E 04 0.347985E 04 0.136763E 05
S 2u.oJ .4o0bbOE O 0.721515E 08 3.703241E Cd 0.320542E 09 3.338674E 08 0.567491E 08 0.553118E 08 0.217382E 093,..j .1 ic IL 0.129479E 13 0.127303L 13 0.5d60255E 13 0.60b7766bbE 12 0.101839E 13 0.100127E 13 0.393512E 134u.0, 0.137og0E 17 0.246723E 17 0.243b19E 17 0.111043E 18 0.115810E 17 0.194054E 17 0.191613E 17 0.753063E 175J.-1 O.271909 i 0.485759E 21 0.480877E 21 0.219188E 22 0.228012E 21 0.382063E 21 0.378223E 21 0.148646E 2260.-,j 0.54td59 5 C.976317E 2j 0.968148E 25 0.441289E 26 0.458276E 25 0.767899E 25 0.761474E 25 0.299269E 2671.LJ O.11iu7lE 3u 0.199036E 30 0.1976U9E 30 0.900117E 30 3.934260E 29 0.156547E 30 0.155425E 30 0.610839E 308.ju J.22o61E 3+ 0.409998E 34 0.407428E 34 0.185709E 35 0.192450E 34 0.322475E 34 0.320453E 34 0.125942E 354J. Ji J.4b:udL 3u 0.851233E 36 0.d46541E 3d 0.365660E 39 0.399587E 38 0.669557E 38 0.665827E 38 0.261679E 3910.030 o.9ZL595E 42 0.1778oOE 43 0.176969E 43 0.806638L 43 0.6348o4E 42 0.139892E 43 0.139191E 43 0.547038E 43



Xl= 3.70 X1= 0.80

X K=tL=U K=OL=1 K=1,L=1 K=1,L=2 K=0,L=O K=O,L=1 K=1,L=1 K=1L=2

0.31 -0.465700E 01 0.280604E 01 -0.371730E 02 0.639559E 01 -0.494203E 01 0.290546E 01 -0.432708E 02 0.844667E 01

0.05 -0.284663L ul 0.220905E 01 -0.737772E 01 0.L3b159E 01 -0.306709E 01 0.221036E 01 -0.859663E 01 0.174745E 01

u.1i -U.2u714'L ul 0.195548E 01 -0.36118bE 01 0.811867E 00 -0.226445E 01 0.191453E OL -0.422224E 01 0.967359E 00

3.2u -0.1lt93jE ul 0.171260E 01 -0.167053E Ci 0.672622E 00 -0.147.54E 01 0.162910E 01 -0.198074E 01 0.676208E 00

0.30 -C. A,339L Ou 0.158443E 01 -0.977139E C0 0.750340E 00 -0.102285E 01 0.147537E 01 -0.119210E 01 0.670358E 00

0.40 -0.50uduo8 Ju 0.150718E 01 -0.59b030E 03 0.68b346E 00 -0.711923E 00 0.137904E 01 -0.769702E 00 0.739168E 00

J.50 -U.3jd/3E uu 0.146073E 01 -0.345134E 00 0.104990E 01 -0.477110E 00 0.13104E 01 -0.494766E 00 0.841146E 00

J.b3 -U.15,407E U 0.143610E 01 -0.155C20E 00 0.12318E 01 -0.289606h 00 0.127766E 01 :-0.293607E 00 0.963110E 00

J.7J J.j 0.142d57E 01 0.0 0.142857E 01 -0.133754E 00 U.125654E 01 -0.134151E 00 0.110003E 01

0.do 0.13 7-4t uO 0.143541E 01 0.134151E 00 0.163983E 01 3.0 0.125000E 01 0.0 0.125000E 01

0.90 0.252994L 00 0.145498E 01 0.255658E 00 0.1865d5E 01 3.117979E 00 0.125601E 01 0.118252E 00 0.141252E 01

1.JJ 0.t,3uou 00 0.148629E 31 0.369739E 00 0.210762E 01 0.224636E 00 0.127332E 01 0.226499E 00 0.158789E 01

2.00 0.171143L 01 0.243656E 01 0.1686bOE 01 0.583275E 01 0.115590E 01 0.201380E 01 0.131024E 01 0.433801E 01

3.00 0.318473E 01 0.513912E 01 0.413722E 01 0.144771E 02 0.27.1882E 01 0.422121E 01 0.338956E 01 0.107558E 02
4.00 0.745257E 01 0.118743E 02 0.102455E 02 0.357333E 02 0.637649E 01 0.974462E 01 0.840512E 01 0.265448E 02

5.00 0.179883E 02 0.286108E 02 0.255577E 02 0.891007E 02 0.153956E 02 0.234764E 02 0.209702E 02 0.661883E 02

41 6.00 0.444082E 02 0.706155E 02 0.644257E 02 0.224593E 03 0.380093E 02 0.579419E 02 0.528627E 02 0.166838E 03

S7.00 0.111359E 03 0.177071U 03 0.163885E 03 0.571309E 03 0.953135E 02 0.145291E 03 0.134471E 03 0.424395E 03

8.00 0.282413E 03 0.449062E 03 0.419978E 03 0.146406E 04 0.241721E 03 0.368466E 03 0.344602E 03 0.108757E 04

fA 9.00 0.722335E UJ 0.114857E 04 0.108275E 04 0.377451E 04 0.618256E 03 0.942433E 03 0.888422E 03 0.280388E 04

10.Ou 0.196d3t 04 G.295729E 04 0.280529E 04 0.977934E 04 0.159186E 04 0.242653E 04 0.230180E 04 0.726454E 04

20.00 0.28770E 08 0.457483E Od 0.445897E 0d 0.155441E 09 0.246255E 08 0.375376E 08 0.365869E 08 0.115469E 09

30.0. J3. 309E 12 0.820974E 12 0.807175E 12 0.281384E 13 0.441915E 12 0.673629E 12 0.662307E 12 0.209025E 13

40.00 0.9b3b21E Io 0.156437E 17 0.154469E 17 0.538485E 17 0.842070E 16 0.128360E 17 0.126746E 17 0.400012E 17

50.00 0.1937u1" 21 0.30B000E 21 0.304905E 21 0.106291E 22 0.165791E 21 0.252722E 21 0.250182E 21 0.789579E 21

60.00 0.3o9314t 25 0.619043 25 0.613863E 25 0.213995E 26 0.333219E 25 0.507940E 25 0.503690E 25 0.158966E 26

70.00 0. 7VJ671 29 G.126201E 30 0.125296E 30 0.436786E 30 0.679314E 29 0.103551E 30 0.102808E 30 0.324465E 30

80.Ou 0.1o3490E 34 .2599o3E 34 0.258334E 34 0.900561E 34 0.139933E 34 0.213306E 34 0.211969E 34 0.668978E 34

93.00 J.339456E 36 C.539764E 38 0.536758E 3d 0.187116E 39 0.29C545E 38 0.442890E 38 0.440423E 36 0.138998E 39

100.33 0.7u9233L 42 0.112774E 43 0.112209E 43 0.3911o5E 43 0.607042E 42 0.925338F 42 0.920701E 42 0.290575E 43



Xl= 0.90 Xl= 1.00

X K=u,L=U K=L= K L= KlL=2 K=,L=O K=C,L=1 K=1tL=l K=1,L=2

0.01 -0.524OU5E 01 0.306360E 01 -0.496960E 02 0.108335E 02 -0.555b37E 01 0.327017E 01 -0.564981E 02 0.135793E 02
0.05 -0.329048E 01 0.226515E 01 -0.987969E 01 0.220740E 01 -0.352153E 01 0.236232E 01 -0.112371E 02 0.274332E 01

0. 1 -O.Z2,oo4L jl G.19z488E 01 -0.4E6273E 01 0.117035E 01 -0.265075E 01 0.197509E 01 -0.553886E 01 0. 141898E 01
0.2J -0.1OJ439E 01 C.159503E 01 -0.230225E 01 0.725988E JO -3.179379E 01 0.159850E 01 -0.263869E 01 0.811624E 00
0.31 -0.ilo7u3jL i 0.141503E 01 -0.141052E 01 0.64b215E 00 -3.130707E 01 0.139118E 01 -0.163582E 01 0.661321E 00
).40 -0.d64budL uu 0.129954E 01 -0.939706E 00 0.660053E 00 -0.973031E 00 0.125611E 01 -0.111170E 01 0.628030E 00
0.53 -3.0b~u75E 00 0.12zl17E 01 -0.638670E 00 0.715t93E 00 -J.722o22E 00 0.116256E 01 -0.780924E 00 0.643894E 00
J.6j -0.41159UE Jo C.116901E 01 -J.422894E 00 0.793242E CO -J.524616E 00 3.109673E 01 -0.547488E 00 0.686574E 00
J.7J -U.2L'Z94 j 0 0.Ii3539E 01 -0.255658E 00 U.d8o849E 03 -3.362060E 00 J0.105123E 01 -0.369739E 00 0.746817E 00
0.6 -0.1179792 J 0.111639E 01 -0.118252E 00 0.9932322E 00 -0.224636E 00 0.102164E 01 -0.226499E 00 0.820319E 00
J.9J J.0 0.11111 01 0.0 0.111111E 01 -0.105537E 00 0.100518E 01 -0.105731E OC 0.905017E 00

1.J3 o.luDji37t u 0.111648E 01 J.105731E uO 0.124014E Cl 0.0 0.100000E 01 0.0 0.999999E 00
2.00 0.971392E 00 0.169002E 01 0.107021E 01 0.332211E 01 0.815563E 00 0.143646E 01 0.878368E OC 0.260351E 01
3.,0 0.233349 01 0.351452E 01 0.281276E 01 0.822349E OL 0.201095E 01 0.295742E 01 0.235686E 01 0.642903E 01
4.0J 0.54b745E 01 0.810375E 01 0.698677E 01 0.202915E 02 0.474425E 01 0.680901E 01 0.586723E 01 0.158592E 02
5.0 0.132540E 02 0.195201E 02 0.174352E 02 0.505947E 02 0.114640E 02 0.163979E 02 0.146455E 02 0.395419E 02
6.00 0.327135E 02 0.481763E 02 0.439528E 02 0.127511E 03 0.283057E 02 0.404695E 02 0.369213E 02 0.996708E 02
7.00 0.820592E 02 0.12C803E 03 0.111807E 03 0.324408E 03 0.709815E 02 0.101478E 03 0.939207E 02 0.253538E 03
8.00 J.ZuloiOE Us 0.306363E 03 0.286521E 03 0.831343E 03 0.180014E 03 0.257353E 03 0.240686E 03 0.649727E 03
9.ud 0.53d 3 0.73512E3 03 0.738683E 03 0.214329E 04 0.46C426E 03 0.658238E 03 0.620514E 03 0.167507E 04

A 10.o j.ijlv49E U4 C.201755E 04 J.191385E 04 0.555304E 04 0.118548E 04 0.169480E 04 0.160768E 04 0.433991E 0420.,- 0.21i1i E 'o U.312109E 06 0.3U4204E 08 0.862649E 06 0.183390E 08 0.262180E 08 0.255540E 08 0.689824E 08
30. 0 0.3b8oo3E 12 0.560C93E 12 0.550679E 12 0.159780E 13 0.329102E 12 0.470493E 12 0.462585E 12 0.124874E 13
40. a U.72973E io 0.10o726E 17 0.105383E 17 0.305770E 17 3.627105E 16 0.896525E 16 0.885248E 16 0.238971E 17
50.oJ J.I4Z736E 21 0.210127E 21 0.208015E 21 0.603557E 21 0.123467E 21 0.176512E 21 0.174738E 21 0.471703E 21
6J. J J.2doodd2t ez 0.4223292 25 3.418796E 25 0.121514E 26 0.246155E 25 0.354768E 25 0.351800E 25 0.949677E 25
1J.0;5 0.Sd ot9L i'9 0. 6077E 29 0.8548C5E 29 0.248022E 30 0.505898E 29 0.723244E 29 0.718060E 29 0.193839E 30
80.0J t.ILu474c 3-t .177355E 34 0.176243E 3, 0.511369E 34 0.104211E 34 0.148983E 34 0.148U49E 34 0.399655E 34
9u.Oo 0.25u142E 31 0.368243E 38 J.366192E 38 0.106251E 39 0.216374E 38 0.309334E 38 0.307611E 38 0.830391E 38

.0.o227[ 42 0.769378E 42 0.765522E 42 0.222117E 43 0.452075E 42 0.646298E 42 0.643059E 42 0.173593E 43



Xl= 2.00 X1= 3100

X K=0IL=0 KK=L=1 K=,L=1 K=I1L=2 K=0,L=0 K=OL=1 K=1,L=1 K=1tL=2

0.01 -0.10b6486E 02 0.764965E 01 -0.159021E 03 0.688781E 02 -0.230087E 02 0.187050E 02 -0.395233E 03 0.224463E 03

0.0O -0.698519: 01 0.509356E O0 -0.316655E 02 0.137231E 02 -0.151652E 02 0.123519E 02 -0.787092E 02 0.447029E 02

0.1i -0.5 1853E 01 0.400079E 01 -0.156669E 02 0.680149E 01 -0.118112E 02 0.963535E 01 -0.389539E 02 0.221270E 02

0.2u -0.388040E 01 0.292918E 01 -0.758277E 01 0.331590E 01 -0.851949E 01 0.696964E 01 -0.188771E 02 0.107292E 02

0.30 -0.301217E 01 0.232611E 01 -0.483975E 01 0.214391E 01 -0.666316E 01 0.546690E 01 -0.120754E 02 0.687067E 01

J.40 -0.22Z216E 01 0.191832E 01 -0.344597E 01 0.155668t 01 -0.540363E 01 0.444792E 01 -0.862735E 01 0.491688E 01

0.50 -0.19bbl7E 01 0.161916E 01 -0.259872E 01 0.120664E 01 -0.447495E 01 0.369727E 01 -0.653816E 01 0.373492E 01

0.6J -O.o4d5E 01 0.I3d949E 01 -0.202846E 01 0.S77191E 00 -0.375698E 01 0.311768E 01 -0.513799E 01 0.294443E 01

0.7J -0.137743E 01 0.120818E 01 -0.161860E 01 0.817957E 00 -0.318473E 01 0.265650E 01 -0.413722E 01 0.238098E 01

0. 0 -0.11590OE 01 0.10b242E 01 -0.131024E 01 0.703566E 00 -0.271882E 01 0.228187E 01 -0.338956E 01 0.196151E 01

0.90 -0.971392E 00 0.943865L 00 -0.107021E 01 0.o19805E 00 -0.233349E 01 0.197293E 01 -0.281276E 01 0.163934E 01

1.00 -0.8155631 00 0.846775E 00 -0.878368E 00 0.558097E JO -0.201095E 01 0.171530E 01 -0.235o86E 01 0.138617E 01

2.00 0.0 0.499999E 00 0.0 0.499999E 00 -0.476700E 00 0.541804E 00 -0.489067E 00 0.411869E 00

3.0U 0.477U00E 00 0.737914E 00 0.489067E 00 0.103087E 01 0.0 0.333333E 00 0.0 0.333333E 00

H 4.0J 0.L2ol78E 01 0.159850E 01 0.134516E 01 0.248516E 01 0.338155E 00 0.497963E 00 0.342553E 00 0.628337E 00

5.0u 0.309403E 01 0.381579E 01 0.339728E 01 0.617817E 01 0.928282E 00 0.110845E 01 0.961240E 00 0.150597E 01

6.00 0.76474E 01 0.940577E 01 0.857749E 01 0.155610E 02 0.232962E 01 0.270481E 01 0.245796E 01 0.377618E 01

7.00 0.192008E 02 0.235812E 02 0.218238E 02 0.395967E 02 0.585479E 01 0.677180E 01 0.626417E 01 0.959904E 01

8.0u 0.4oo9o5E 02 0.598017E 02 0.559281E 02 0.101471E 03 0.148526E 02 0.171700E 02 0.160568E 02 0.245966E 02

9.30 0.12t)53E 0j 0.152955E 03 0.144189E 03 0.261604E 03 0.379904E 02 0.439147E 02 0.413976E 02 0.634120E 02

1C.0i J.3y:o92E vj 0.393822E 03 0.373579E 03 0.677788E 03 0.978164E 02 0.113069E 03 0.107257E 03 0.164293E 03

20.u 0.49o010t 07 0.609230E 07 0.593800E 07 0.107734E 08 0.151319E 07 0.174914E 07 0.170484E 07 0.261142E 07

3u.. u.9u/14E II 0..lC93291 12 0.107491E 12 0.195022E 12 0.271548E 11 0.313891E 11 0.308615E 11 0.472727E 11

40 . o U.1uot2Et 10 0.20d327E 10 0.205706E 16 0.373214E 16 0.517436E 15 0.598120E 15 C.590596E 15 0.904658E 15

50.uJ 0.33.099E 2 C.410163E 20 0.406041E 20 0.736684E 20 0.101875E 20 0.117761E 20 0.116577E 20 0.178570E 20

60.A .ou(Zt9dL 24 0.824379E 24 0.817481E 24 0.148316E 25 0.204757E 24 0.236685E 24 0.234704E 24 0.359513E 24

70.Jo 0.lju8j3E L9 U.168061E 29 0.166856E 29 0.302729E 29 0.417425E 28 0.482515E 28 0.479056E 28 0.733803E 28

83.00 u.2oiv107 33 0.340192E 33 0.344022E 33 0.624162E 33 0.859864E 32 0.993943E 32 0.987712E 32 0.151295E 33

90.Jo 0.5oij327 37 0.71b803E 37 0.714799E 37 0.129687E 38 0.178534E 37 0.206373E 37 0.205224E 37 0.314356E 37

10.O) 0.1242i93L t2 U.15U181E 42 0.149428E 42 0.271109E 42 0.373015E 41 0.431180E 41 0.429019E 41 0.657159E 41



Xl= 4.00 X1= 5d00

X K=0,L=0 K=0,L=1 K=1tL=1 K=1,L=2 K=O0L=O K=O,L=1 K=1tL=l K=1,L=2

0.01 -0.533479E 02 0.400893E 02 -0.975691E 03 0.642051E 03 -0.126602E 03 0.114898E 03 -0.243292E 04 0.175010E 04
0.05 -o.351656E 02 G.304057E 02 -0.194307E 03 0.1278o4E 03 -0.848274E 02 0.757907E 02 -0.484513E 03 0.348529E 03

0.10 -3.274iv3t 02 0.236994E 02 -0.961676E 02 0.632841E 02 -0.661092E 02 0.590682E 02 -0.239799E 03 0.172497E 03
0.2u -u.19197o6 02 0.171180E 02 -0.466097E 02 0.306739E 02 -0.477396E 02 0.426571E 02 -0.116226E 03 0.836065E 02
0.3u -J.15500uE 02 0.134072E 02 -0.298229E 02 0.196288E 02 -0.373818E 02 0.334037E 02 -O.743687E 02 0.534976E 02
0.4J -0.1238+7E 02 0.108902E 02 -0.213156E 02 0.140319E 02 -0.303557E 02 0.271269E 02 -0.531566E 02 0.382393E 02
0.5, -J.104358L 04 0.903510E 01 -0.161627E 02 0.1004:24E 02 -0.251771E 02 0.225005E 02 -0.403094E 02 0.289982E 02
0.6 -0.8T77530E u 0. 7o0183E 01 -0.127110E 02 0.837250E 01 -0.211755E 02 0.189258E 02 -0.317039E 02 0.228085E 02
o.7, -0.'14L2,7 01 0.b40037E 01 -0.102455E 02 0.675157E 01 -0.179883E 02 0.160787E 02 -0.255577E 02 0.183877E 02
0.dJ -u.o3769t 901 0.553205E 01 -0.840512E 01 0.554205E 01 -0.153956E 02 0.137628E 02 -0.209702E 02 0.150882E 02
0.9u -0.54d7'5 01 C.47537E 01 -0.698677E 01 0.461036E 01 -0.132540E 02 0.118498E 02 -0.174352E 02 0.125459E 02

1.Uo -J.47 **25 01 0.412478E 01 -0.586723E 01 0.387539E 01 -0.114640E 02 0.102510E 02 -0.146455E 02 0.105397E 02
2.00 -0.120178E 01 0.114000E 01 -0.134516E 01 0.925923E 00 -0.309403E 01 0.278089E 01 -0.339728E 01 0.245687E 01
3.uu -0.338155E 00 U.399968E 00 -0.342553E 00 0.326686E 00 -0.926282E 00 0.865147E 00 -0.961240E 00 0.723948E 00
4.L0 0. 0.250000E 00 0.0 0.250000E 00 -0.262271E 00 0.317289E 00 -0.264320E 00 0.270343E 00

o 5.u0 0.2oZZ71L 00 0.376071E 00 0.264320E 00 0.449449E 00 0.0 0.200000E 00 0.0 0.199999E 00
6.0J 0.73o254E Ou 0.851461E 00 0.752645E 00 0.107607E 01 0.214282E 00 0.302210E 00 0.215399E 00 0.349186E 00
i.Ou 0.187665 01 0.210878E 01 0.194348E 01 0.271821E 01 0.610725E 00 0.692234E 00 0.620064E 00 0.836352E 00
3.00 0.470931E 01 0.533891E 01 0.499028E 01 0.695933E 01 0.157419E 01 0.173289E 01 0.161354E 01 0.212561E 01
9.uu 0.12Zu35t Q2 0.136523E 02 0.128689E 02 0.179397E 02 0.403515E 01 0.442437E 01 0.416834E 01 0.547399E 01

1.u3 J.31'~z~2 uZ u.351501E 02 0.333430E 02 0.464790E 02 0.I03926E 02 0.113889E 02 0.108026E 02 0.141804E 02
20.o J.4cuicUbE uuo .543758E Oo 0.529987E 06 0.738777E 06 0.160778E 06 0.176176E 06 0.171714E 06 0.225391E 06
33.u) .d7djit9 li C.975796d 10 U.959396E 10 0.133735E 11 0.288522E 10 0.316155E 10 0.310841E 10 0.408009E 10
40 40.)u .1tu21 I .~.5939E Ib 0.183600E 15 0.255930E 15 0.549780E 14 0.602435E 14 0.594857E 14 0.780807E 14
50.u .J.3272o3L i .36005E 19 0.362406E 19 0.505177E 19 0.108243E 19 0.118610E 19 0.117418E 19 0.154123E 19
60.- 0.6b5Ii~9t 2D u.735736E 23 0.729629L 23 0.101707E 24 0.217556E 23 0.238392E 23 0.236397E 23 0.310294E 23

A 70.3J J.134u93E 2o C.I15CLOE 28 0.148925E 28 0.207594E 28 0.443518E 27 0.485995E 27 0.482511E 27 0.633343E 27
80.00 u.27u222E 32 0.308988E 32 0.3C7051E 32 0.428016E 32 0.913612E 31 0.100111E 32 0.994837E 31 0.130582E 32
90.UJ U.b73522E 3u 0.641556E 36 0.631982E 36 0.889318E 36 0.189694E 36 0.207862E 36 0.206704E 36 0.271319E 36

100.OJ 0.119o/71 #l 0.134042L 41 0.133370E 41 0.185911E 41 0.396332E 40 0.434290E 40 0.432114E 40 0.567191E 40



X1= 6.00 Xl= 700O

X K=,L=O K=OL=1 K=ItL=1 K=1,L=2 K=0,L=0 K=0L=1 K=1tL=1 K=IL=2

0.01 -0.317428E 03 0.289611E 03 -0.613259E 04 0.467748E 04 -0.795972E 03 0.736698E 03 -0.155998E 05 0.123979E 05

0.05 -0.209382E 03 0.191034E 03 -0.122129E 04 0.931513E 03 -0.525040E 03 0.485941E 03 -0.310668E 04 0.246902E 04

0.10 -0.lo181E 03 0.148882E 03 -0.6C4453E 03 0.461032E 03 -0.409188E 03 0.378717E 03 -0.153758E 04 0.122199E 04

0.2u -0.117841E J3 0.107515E 03 -0.292967E 03 0.223454E 03 -0.295494E 03 0.273490E 03 -0.745237E 03 0.592274E 03

0.30 -U.9227T~E 02 0.841906E 02 -0.187460E 03 0.142981E 03 -0.231388E 03 0.214158E 03 -0.476853E 03 0.378977E 03

0.40 -0.749333E 02 0.683686E 02 -0.133992E 03 0.102200E 03 -0.187902E 03 0.173910E 03 -0.340844E 03 0.270884E 03

0.50 -0.o2iL14E 02 0.567070E 02 -0.101609E 03 0.775003E 02 -0.155851E 03 0.144246E 03 -0.258469E 03 0.205417E 03

J.6b -0.527 6E 62 0.47b961E 02 -3.799179E 02 0.609563E 02 -0.131085E 03 0.121324E 03 70.203293E 03 0.161566E 03

0.f7 -0.444Uo2c 02 0.405190E 02 -0.644257E 02 0.491402E 02 -0.111359E 03 0.l03067E 03 -0.163885E 03 0.130247E 03

0.60 -0.3o0093E 02 0.340810E 02 -0.528627E 02 0.403209E 02 -0.953135E 02 0.882167E 02 -0.134471E 03 0.106871E 03

3.90 -0.i 7235E OL 0.29858bE 02 -0.439528E 02 0.335253E 02 -0.820592E 02 0.759494E 02 -0.111807E 03 0.888584E 02

1.0d -0.2adu~c u2 0.25b21dE 02 -0.369213E 02 0.281624E 02 -0.709815E 02 0.656967E 02 -0.939207E 02 0.746435E 02

2.00 -0.761474E 01 0.698952E 01 -0.857749E 01 0.b5 660E 01 -0.192008E 02 0.177729E 02 -0.218238E 02 0.173458E 02

3.03 -0.23Z9o2 L0 0.213754E 01 -0.245796E 01 0.188549E 01 -0.585479E 01 0.542293E 01 -0.626417E 01 0.498204E 01

t.uJ -0.73o254E 00 0.699744E 00 -0.752645E 00 0.600578E 00 -0.187665E 01 0.174648E 01 -0.194348E 01 0.155350E 01

5. j0 -0.219z2L 00 0.263027E 00 -0.215399E 00 0.230410E 00 -0.610725E 00 0.588327E 00 "0.620064E 00 0.515072E 00

6.00 0.0 0.166666E 00 0.0 0.1o6666E 00 -0.181169E 00 0.224648E 00 -0.181843E 00 0.200679E 00

7.00 O.ldllb9E 00 0.252634E 00 0.181843E 00 0.285263E 00 0.0 0.142857E 00 0.0 0.142857E 00

0. .3 2 .u.OE Ou C.583595E O 0.527865E 00 0.683839E 00 0.156933E 00 0.217047E 00 0.157371E 00 0.241021E 00

9.00 0.13 b99E Ci 0.147281E 01 0.138217E o1 0.174b78E 01 0.455973E 00 0.504627E 00 0.459853E 00 0.578357E 00

0L.u ~.35ulE ul U.378518E 01 0.358844E 01 0.452009E 01 0.119310E 01 0.128162E 01 C.121020E 01 0.148354E 01

20.uj 0.5ibbiL 05 0.585387E 0O 0.570561E 05 0.718324E 05 0.185033E 05 0.197833E 05 0.192823E 05 0.235439E 05

33.buJ .973-4E u9 U.C5050E 10 0.1C3285E 10 0.130033E 10 0.332050E 09 0.355021E 09 0.349053E 09 0.426199E 09.

40.'J J.lo2vLuE 14 t.2001
7
3E 14 0.197o55E 14 0.248844E 14 0.632722E 13 0.676493E 13 0.667984E 13 0.815616E 13

50.oJ 0.3 6.tiE Io 0.394111E Id 0.390150E 18 0.491191E 18 0.124573E 18 0.133191E 18 0.131853E 18 0.160994E 18

63.0J 0 .73jaibE 22 0.792115E 22 0.785487E 22 0.988912E 22 0.250377E 22 0.267698E 22 0.265458E 22 0.324127E 22

70.03 0.199417E 27 0.161484E 27 0.160326E 27 0.201847E 27 0.510429E 26 0.545740E 26 0.541828E 26 0.661578E 26

80.00 0.301l91E 31 C.332644E 31 3.330559E 31 0.416166E 31 3.105144E 31 0.112418E 31 0.111713E 31 0.136403E 31

'0.0O 0.639318E 35 0.690672E 35 0.686824E 35 0.864698E 35 0.218312E 35 0.233415E 35 0.232115E 35 0.283415E 35

lnu.jo a.133574k 4~ 0.144303E 40 0.143580E 40 0.180765E 40 0.456124E 39 0.487678E 39 0.485234E 39 0.592477E 39



Xl= d.00 Xl= 9.00

X K=UL=0 K=OtL=1 K=I.L=1 K=1,L=2 K=0,L=O K=COL=1 K=1,L=1 K=1,L=2

0.01 -0.201b63E 04 0.188789E 04 -0.399767E 05 0.327509E 05 -0.516309E 04 0.486719E 04 -0.103064E 06 0.864269E 05
0.05 -0.13j153E 04 0.124529E 04 -0.796131E 04 0.652229E 04 -0.340568E 04 0.321050E 04 -0.205251E 05 0.172118E 05

0.1j -u.lu3772E 04 0.970516E 03 -0.3S4C28E 04 0.322806E 04 -0.265421E 04 0.250210E 04 -0.101585E 05 0.851859E 040.2u -0.749j9L 0J C.70Ub56 03U -u.19C9780 04 0.15o458E 04 -3.191673E 04 0.180688E 04 -0.492361E 04 0.412880E 04
0.3J -0. dobl3 03 0.54~808E 03 -0.122200E 04 0.100113E 04 -J.15(u90F 04 0.141489E 04 -0.315046E 04 0.264189E 04
0.4U -0. 7t531E u3 O.'t45o8L 03 -0.873460E 03 0.7151E 03 -3.121883E 04 0.114898E 04 -0.225188E 04 0.188836E 04
U.5J -0.3V5 47t U3 L.369649E 03 -0.6

6 2 3 6 3
L 03 0.542o40E 03 -0.101093E 04 0.952995E 03 -0.170765E 04 0.143198E 040..o -0.332439E 03 0.310909E 03 -U.52C967E 03 0.42o801E 03 -0.650287E 03 0.801557E 03 -0.134311E C4 0.112629E 04

0.70 -0.2oZ413L uJ C.264123L 0- -0.419978E 03 0.3440.6E 03 -3.722335E u3 0.680938E 03 -0.108275E 64 0.907962E 030.8 -0.241721t uv 0.22.0o7E 03 --. 344602c 03 0.282314E 03 -0.18256E 03 0.582824E 03 -0.888422E 03 0.745005E 03
J.9u -0.2uolu 03 C.1,,t300E 03 -0.286521E 03 0.234732E 03 -3.5322b2E 03 0.501777E 03 -0.738683E 03 0.619439E 03

1.Jj -o.lbuu14E 03 u.16o35o0 03 -0.240686b 03 0.19716E 03 -0.460426E 03 0.434039E 03 -0.626514E 03 0.520345E 032.00 -0.4do9o5E 02 C.455433L 02 -0.559281E 02 0.456195E .2 -0.124553E 03 0.117415E 03 -0.144189E 03 0.120913E 03
3.03 -0.14u~2oE 02 0.138921E 02 -0.160568E 02 0.131557E 02 -0.379904F 02 0.358137E 02 -0.413976E 02 0.347152E 02

.u3 -0.416961L 1l 0.446419E 01 -0.499028E 01 0.409133E l1 -0.122335E 02 0.115053E 02 -0.128689E 02 0.107925E 02)o 5.00 -0.157419k 01 C.14b20E 01 -3.161354E 01 0.132950E 01 -0.403515E 01 0.380666E 01 -0.416834E 01 0.349807E 010 6.03 -0.522038E 00 U.507884E 00 -0.527865E 00 0.451o2(E 00 -0.135699E 01 0.128606E 01 -0.138217E 01 0.116566E 017.00 -0.15o933E 00 0.196058E 00 -0.157371E 00 0.177703E 03 -0.455973E 00 0.446970E 00 -0.459853E 00 0.402437E 00d.00 0.0 0.125000E 00 0.0 0.124999E 00 -3.138423E 00 0.173932E 00 -0.138724E 00 0.159428E 009.Ju 0.130423L 00 0.1925bE Ou 0.138724E Ou 0.208o13E 00 O.0 0.111111E 00 0.0 0.11111E 00

10. u J.4 +o1dt OU 0.444585E 00 0.407532E 00 u.501o77E JO J.L23623E 00 0.169356E 00 0.124038E Ob 0.183861E 002.jj J.o330UUL u U .676760 J, 3o .659620E 04 0.786746E 04 0.221o30E 04 0.233633E 04 0.227716E 04 0.266620E 043U.uJ J.i14492E U, 0.12144 E 09 .119406E 09 0.142419E 09 0.397724E 08 0.419265E 08 0.412217E Ob 0.482643E 0844J.j J.2iolo4L li u.231419E 13 J.22d508E 13 0.272547E 13 0.7576o4E 12 0.798910E 12 0.788861E 12 0.923633E 12S 53.J J.4 vjtj 17 0.455028L 17 u.451049E 17 0.537978E 17 3.149212E 17 0.157293E 17 0.155712E 17 0.182315E 17ou.u J.djoj0u0 2 0.915757F 21 J.90d094E 21 0.108311E 22 J.29939E 21 0.316140E 21 0.313495E 21 0.367054E 217.Jw 0.17o,970 2 0.186690E 2o 0.185351E 26 0.221074E 2 3J.6113d3E 25 0.644496E 25 0.639875E 25 0.749195E 25A 60.: .30o 41L JO 0.364506E 30 0.3E2156E 30 0.455807E 30 0.125940E 30 0.132761E 30 0.131929E 30 0.154468E 3090.0, i. I521 7E i 0.798479c 34 0.794031E 34 0.947U62E 34 0.2o1491E 34 0.275653E 34 0.274118E 34 0.320949E 34130.uj i .I1IiI3L -i 0.166828E 39 0.165992F 39 0.197983E 39 0.546338E 38 0.575927E 38 0.573041E 38 0.670943E 38



XI= 10.00 Xl= 20,00

X K=uL=O K=OL=I1 K=1Lt=1 K=1,L=2 K=0,L=0 K=O,L=l K=1,L=1 K=1,L=2

0.01 -0.132937E 05 0.126104E 05 -0.267029E 06 0.228092E 06 -0.205649E 09 0.200440E 09 -0.424439E 10 0.393025E 10
0.05 -0.876879E 04 0.831806E 04 -0.531784E 05 0.454242E 05 -0.135650E 09 0.132215E 09 -0.845264E 09 0.782703E 09

0.10 -0.ob3393E 04 0.648266E 04 -0.263195E 05 0.224817E 05 -0.105719E 09 0.103041E 09 -0.418345E 09 0.387382E 090.2u -U.49~511E 04 0.46b144L 04 -0.127565E 05 0.108965E 05 -0.763445E 08 0.744109E 08 -0.202764E 09 0.187757E 09
0.30 -0.3ao45E U4 U.3665d2E 04 -0.816250E 04 0.697229E 04 -0.597818E 08 0.582677E 08 -0.129742E 09 0.120140E 09
0.40 -0.313019E 04 0.2976d9E 04 -0.583437E 04 0.498363E 04 -0.485468E 08 0.473172E 08 -0.927366E 08 0.858729E 08.5bo -0.26u 0E 04 U.246911E 04 -u.442432E 04 0.377919E 04 -J.402660E 08 0.392462E 08 -0.703241E 08 0.651192E 08
O.b0 -0.21a928E u' 0.207675E 04 -0.347985E 04 0.297244E 04 -0.338674E 08 0.330097E 08 -0.553118E 08 0.512180E 08
0.7J -0.16I963t 04 C.17624E 04 -0.280529E 04 0.239623E 04 -0.287710E 08 0.280423E 08 -0.445897E 08 0.412895E 08
O.d -0.15 l1U U04 0.151003E 04 -0.230180E 04 0.196617E 04 -0.246255E 08 0.240018E 08 -0.365869E 08 0.338790E 08
0.90 -U.137u4E 0- 0.130005E 04 -0.1l1385E 04 0.163478E 04 -0.212011E 08 0.206641E 08 -0.304204E 08 0.281689E 08

1.Uu -0.115481 04 0.112455E 04 -0.160768E 04 0.1373265 04 -0.183390E 08 0.178746E 08 -0.255540E 08 0.236626E 082.00 -0.320o92E 03 0.304208E 03 -0.373579E 03 0.31910oE 03 -0.496101E 07 0.483536E 07 -0.593800E 07 0.549851E 07
3.U0 -0.97o1b4E 02 0.927887E 02 -0.107257E 03 0.916176E 02 -0.151319E 07 0.147486E 07 -0.170484E 07 0.157866E 07
4.00 -0.314222E 02 0.298075E 02 -0.333430E 02 0.284815E 02 -0.486095E 06 0.473784E 06 -0.529987E 06 0.490761E 06

p 5.00 -0.103926E 02 0.985937E 01 -0.10026E 02 0.922836E 01 -0.160778E 06 0.156705E 06 -0.171714E 06 0.159005E 06b.ud -0.35uiD4E 01 0.332394E 01 -0.358844E 01 0.306749E 01 -0.541861E 05 0.528137E 05 -0.570561E 05 0.528332E 05
I.uu -O.119310E 01 0.113776E 01 -0.121020E 01 0.103958E 01 -0.185033E 05 0.180347E 05 -0.192823E 05 0.178552E 05
8.00 -0.404dl8E 00 0.399194E 00 -0.407532E 00 0.363078E 00 -0.638000E 04 0.621841E 04 -0.659620E 04 0.610799E 04
9.00 -u.123623E 00 0.156297E 00 -0.124038E 00 0.144548E 00 -0.221630E 04 0.216016E 04 -0.227716E 04 0.210862E 04

10.0J 0.0 0.999998E-U0 0.0 0.999997E-01 -0.774467E 03 0.754852E 03 -0.791732E 03 0.733134E 03
20 .iU 0.7 I.o7t O 0.812306E 03 0.791732E 03 0.913198E 03 0.0 0.499999E-01 0.0 0.500000E-01
3u.Jj 0.13o981U d 0.145772E 08 0.143322E 08 0.165310E 08 0.448776E 03 0.459861E 03 0.452132E 03 0.486445E 0340.uJ 0.2U'.od9L 12 C.2777b9E 12 0.274275E 12 0.316353E 12 0.855143E 07 0.876267E 07 0.865244E 07 0.930911E 07
51.0u 0.521i 9E lb 0.54884E 1o 0.541388E 16 0.624446E 16 0.168365E 12 0.172524E 12 0.170790E 12 0.183751E 12
6C.0u 0.lu'.797E 2, G.109917E 21 0.1C8997E 21 0.125719E 21 0.338392E 16 0.346751E 16 0.343850E 16 0.369946E 16
70.00 0.213oU3E 25 0.224081E 25 0.222475E 25 0.256606E 25 0.689860E 20 0.706901E 20 0.701833E 2C 0.755098E 20A 80.00 0.44u088E 29 0.461590E 29 0.458696E 29 0.529068E 29 0.142106E 25 0.145616E 25 0.144703E 25 0.155685E 25
90.00 0.913759E 33 0.958404E 33 0.953065E 33 0.109928E 34 0.295056E 29 0.302344E 29 0.300660E 29 0.323478E 29

Idu.00 U.l19ul3E 36 0.200241E 38 0.199238E 38 0.22
9
804E 38 0.616465E 33 0.631693E 33 0.628528E 33 0.676229E 33



X1= 30.00 Xl= 40.00

X K=u,L=O K=OL=1 K=19L=1 K=1,L=2 K=t0,L=O K=OL=1 K=1,L=1 K=1sL=2

0.01 -0.369046E 13 0.362843E 13 -0.769331E 14 0.730246E 14 -0.703218E 17 0,694372E 17 -0.147035E 19 0.141557E 19
0.05 -0.243430E 13 0.239339E 13 -0.153012E 14 0.145427E 14 -0.463857E 17 0.458022E 17 -0.292819E 18 0.281909E 18

0.10 -0.189717E 13 0.186528E 13 -0.757300E 13 0.71976iE 13 -0.361506E 17 0.356958E 17 -0.144924E 18 0.139525E 180.20 -0.137uU4E 13 0.134701E 13 -0.367049E 13 0.348855E 13 -3.261061E 17 0.257777E 17 -0.702421E 17 0.676249E 17
0.30 -U.1072dlE 13 0.105478E 13 -0.234863E 13 0.22322LE 13 -0.204424E 17 0.201853E 17 -0.449457E 17 0.432710E 17
0.,0 -0.871194t I2 0.856550E 12 -0.167874E 13 0.159553E 13 -0.166006E 17 0.163918E 17 -0.321261E 17 0.309291E 17
0.50 -0.72Z591L i4 0.710445E 12 -0.127303E 13 0.120992E 13 -0.137690E 17 0.135958E 17 -0.243619E 17 0.234542E 17
0.60 -0.607766E 12 0.597550E 12 -0.100127E 13 0.951638E 12 -0.115810E 17 0.114353E 17 -0.191613E 17 0.184474E 17
0.70 -0.510o09L 12 0.507630E 12 -0.807175E 12 0.767164E 12 -0.983827E 16 0.971451E 16 -0.154469E 17 0.148714E 17
0.0O -0.441915L 12 0.434487E 12 -0.662307E 12 0.629477E 12 -0.842070E 16 0.831478E 16 -0.126746E 17 0.122023E 17
0.90 -U.38j463t 12 0.374068E 12 -0.550679E 12 0.523382E 12 -0.724973E 16 0.715853E 16 r0.105383E 17 0.101457E 17

1.00 -0.
3
29102E 12 0.323571E 12 -0.462585E 12 0.439655E 12 -0.627105E 16 0.619217E 16 -0.885248E 16 0.852264E 162.00 -0.890274E 11 0.875310E 11 -0.107491E 12 0.102163E 12 -0.169642E 16 0.:167508E 16 -0.205706E 16 0.198042E 16

3.0u -0.271548E 11 0.266984E 11 -0.308615E 11 0.293317E 11 -0.517436E 15 0.510927E 15 -0.590596E 15 0.568591E 15
4.00 -0.872319E lu 0.857657E 1C -0.959396E 10 0.911840E 10 -0.166221E 15 0.164130E 15 -0.183600E 15 0.176759E 15
5.Gj -0.288522E 10 0.283673E 10 -0.310841E 10 0.295433E 10 -0.549780E 14 0.542864E 14 -0.594857E 14 0.572692E 140o.u -0.972394E )9 0.956049E 09 -0.103285E 10 0.981648E 09 -0.185290E 14 0.182959E 14 -0.197655E 14 0.190291E 14
7.00 -0.332050E 09 0.326469E 09 -0.349053E 09 0.331751E 09 -0.632722E 13 0.624763E 13 -0.667984E 13 0.643095E 13
8.00 -0.114492E 09 0.112567E 09 -0.119406E 09 0.113487E 09 -0.218164E 13 0.215420E 13 -0.228508E 13 0.219993E 13
9.30 -0.397124E 08 0.391039E 08 -0.412217E 08 0.3917848 08 -0.757864E 12 0.748331E 12 -0.788861E 12 0.759468E 12

10.0 -0.13b981E ub 0.136645E 08 -0.143322E 08 0.136217E 08 -0.264829E 12 0.261498E 12 -0.274275E 12 0.264055E 122).,u -0.'4o776E 03 0.441232E 03 -0.452132E 03 0.429720E 03 -0.855143E 07 0.844386E 07 -0.865244E 07 0.833005E 07
30.,, - .u 0.333333E-01 0.0 0.333333E-01 -0.317627E 03 0.313632E 03 -0.318817E 03 0.306938E 034

.0Ou u.317bL7 03 0.322d18E 03 0.318817E 03 0.334886E 03 0.0 0.250000E-01 0.0 0.250000E-01
50.0J u.o2J3oL 07 0.635o98E 07 0.o29310E 07 0.661029E 07 0.246125E 03 0.249183E 03 0.246678E 03 0.255985E 03u60.10 U.1250iOE 12 0.127768E 12 0.126699E 12 0.133085E 12 0.494681E 07 0.500827E 07 0.496636E 07 0.515373E 0770.j0 0.25uo36L Io G.26u472E lo 0.258605E 16 0.271639E 16 0.100848E 12 0.102100E 12 0.101369E 12 0.105193E 1280.uJ 0.5272oL 2u 0.53b552E 20 0.533189E 20 0.560063E 20 0.207738E 16 0.210319E 16 0.209001E 16 0.216886E 16%
9
0.j0 O.1U95 t 25 0.111405E 25 0.110784E 25 0.116368E 25 0.431329E 20 0.436688E 20 0.434255E 20 0.450639E 20A 100.0 O(.226915E 29 0.232760E 29 0.231594E 29 0.243267E 29 0.901184E 24 0.912380E 24 0.907808E 24 0.942057E 24



xI= 50.00 X1= 60.00

X K=U,L=U K=0,L=1 K=1,L=1 K=1,L=2 K=C,L=O K=O,L=1 K=1,L=1 K=1,L=2

J.OL -0.13o453L 22 0.137061E 22 -0.290232E 23 0.281570E 23 -0.278273E 26 0.275945E 26 -0.584322E 27 0.569776E 27
0.05 -0.913264E 21 0.904086E 21 -0.577992E 22 0.560741t 22 -0.183555E 26 0.182019E 26 -0.116367E 27 0.113470E 27

1l. -j.7117,9t ~i 0.70,.597E 21 -0.286065E 22 0.277527E 22 -0.143053E 26 0.141856E 26 -0.575932E 26 0.561595E 26
u.LO -u.2l1'o9L 2I 6.5uoo23E 21 -0.138650E 22 0.134512E 22 -3.103305E 26 0.102441E 26 -0.279144E 26 0.272195E 26

0.ic -J.,,oOL Li U.3,b435F 21 -0.887178E 21 0.860699E 21 -0.808937E 25 0.802168E 25 -0.178615E 26 0.174169E 26
.4J -J.32, tl 2i 0.32355bt 21 -3.634134E 21 U.615207E 21 -0.65b91IE 25 0.o51413E 25 -0.127670E 26 0.124492E 26

3.BJ - L.7voLc Zi L.26i,3obE 21 -J.46C877L 21 0.460525E 21 -0.544b59E 25 0.540300E 25 -0.968148E 25 0.944046E 25
3.od -J.2ZodI2C 21 0.22b21E 21 -0.378223E 21 0.366934E 21 -0.458276F 25 0.454442E 25 -0.761474E 25 0.742518E 25
).7J -J.ILioiL i .19175tL 21 -U.3C4905E 21 0.295804E 21 -J.389314E 25 0.386057E 25 -0.613863E 25 0.598582E 25
.06 -o. /L 2L (i C.lo4125E 21 -0.250182E 21 0.242715E 21 -0.333219E 25 0.330431E 25 -0.503690E 25 0.491151E 25
S.vJ -. l1'tlut L1 0.14133JZ 21 -u.208015E 21 0.201i07E 21 -0.28652dE 25 0.28448ZE 25 -0.416790E 25 0.4C8370E 25

1.uw -. )tosL 21 C.12221L 21 -J.174736E 21 0.169523E 21 -J.248155E 25 0.246078E 25 -0.351800E 25 0.343042E 25
2.k0 -0.j399Lt 2u C.330o42E 20 -0.406041E 20 0.393922E 20 -0.671298E 24 0.665681E 24 -0.817,81E 24 0.797130E 24
j.0J -J.luid75E 2,) C.lO0b5IE 20 -0.116577E 20 0.113098E 20 -0.204757E 24 0.203044E 24 -0.234704E 24 0.228861E 24
4.3J -3.372u3t 19 0.323974E 19 -0.362406E 19 0.351589E 19 -0.657759E 23 0.652255E 23 -0.729629E 23 0.711466E 23

I. u -O.IootJE LV 0.107155E 19 -0.117418E 19 0.113914E 19 -0.21755bE 23 0.215735E 23 -0.236397E 23 0.230512E 23
o.33 -0.3ooulE Id 0.361141E Id -0.390150E 18 0.378506E 18 -0.733218E 22 0.727083E 22 -0.785487E 22 0.765933E 22
(.uo -j.2-513, Id 0.123321E 18 -0.131853E.18 0.127917E 18 -0.250377E 22 0.248282E 22 -0.265458E 22 0.258850E 22
d.u --. 4 I5J3L 17 C.425216E 17 -0.451049E 17 0.437587E 17 -0.863308E 21 0.856084E 21 -0.908094E 21 0.885488E 21
3.d -O.14qzl2t 11 C.14717120 17 -0.155712E 17 0.151065E 17 -0.299898E 21 0.297388E 21 -0.313495E 21 0.305691E 21

i' . - . ,1a-)L Ia .5161u9E o1 -U.541386E lb 0.5252291 16 -0.104797E 21 0.103920E 21 -0.108997E 21 0.106284E 21
2j. -J.l~ioSEr 12 t.0to3E 12 -0.17079uE 12 0.165o92E 12 -0.338392E 16 0.335561E 16 -0.343850E 16 0.335290E 16
3J.ou - 2.oz ouc uc C.619C7bE 07 -0.b2931LE OC 0.610s27E 07 -0.125690E 12 0.124638E 12 -0.126699E 12 0.123544E 12
4 ]. :J -. 2 j3CL t .24.:651 33 -0.24667bE 03 0.239316E 03 -0.494681E 07 0.490542E 07 -0.496636E 07 0.484273E 07
S( J.2 C.2Ci L)OvL-1 0.0 0.200000E-01 -0.200996E 03 0.199316E 03 -0.201299E 03 0.196288E 03

#'A 6 iJ .iu'irt uj k.20,s98 0J3 3.201299E 03 0.207368E 03 0.0 0.166666E-01 0.0 0.166667E-01
71.O j .4 o2L Qu 0.413b9E 07 0.410872E 07 0.423259E 07 0.169892E 03 0.171302E 03 0.170074E 03 0.174343E 03A BO.Ou u. 77L 11 C.852476t 11 0.847132E 11 0.872o70E 11 0.349965E 07 0.352869E 07 0.350657E 07 0.359459E 07

2.uJ J.17 ),7t io U.IL 3I1IE i 0.176015E 16 0.181321E 16 0.726635E 11 0.732666E 11 0.728584E 11 0.746873E 11
1O0.la ,.30oLi07 2z 0.369610F 20 U.367957E 20 0.379050E 20 0.151817E 16 0.153077E 16 0.152310E I6 0.156133E 16



X1= 70.00 X1= 80.00

X K=O0L=O K0,tL-1 KaltL=1 K=1,L=2 K=0,L=O K=OtL=1 K=1,L=l K=1,L=2

0.01 -0.5b7299E 30 0.563232E 30 -0.119266E 32 0.1167206 32 -0.116859E 35 0.116127E 35 -0.245902E 36 0.241306E 360.05 -0.374202t 30 0.371520E 30 -0.237517E 31 0.232446E 31 -0.770828E 34 0.765995E 34 -0.489710E 35 0.480557E 35

0.13 -0.291633E 30 0.289543E 30 -0.117554E 31 0.1150446 31 -0.600742E 34 0.596976E 34 -0.242371E 35 0.237841E 35J.20 -0.2iuoO3E 30 0.209093E 30 -0.569761E 30 0.557596E 30 -0.433825E 34 0.431105E 34 -0.117473E 35 0.115277E 350.30 -0.16491~ 30 0.163731E 30 -0.364572E 30 0.356788E 30 -0.339708E 34 0.337578E 34 -0.751670E 34 0.737621E 340.4J -0.133qe0E 30 0.1329o0t 30 -U.260588E 30 0.255024E 30 -0.275865E 34 0.274136E 34 -0.537276E 34 0.527234E 340.50 -U.lliu77L 3u 0.110281E 30 -0.197609E 30 0.193390E 33 -0.228810E 34 0.227376E 34 -0.407428E 34 0.399813E 34u.oO -3.93,260U 21 0.927563E 29 -0.155425E 30 0.152106E 30 -0.192450E 34 0.191244E 34 -0.320453E 34 0.314464E 340.70 -0.19jo71E 29 0.787982E 29 -0.125296E 30 0.122621E 30 -0.163490E 34 0.162465E 34 -0.258334E 34 0.253505E 34J.dO -O.o79j14E 29 0.674444F 29 -0.102808E 3u 0.100613E 30 -0.139933E 34 0.139056E 34 -0.211969E 34 0.208007E 34
0.u -0.56.ta9E 29 0.580657E 29 -0.854805E 29 0.83b555E 29 -0.12C474E 34 0.119719E 34 -0.176243E 34 0.172949E 34

1.u0 -0.50088E 29 C.502271E 29 -0.718060E 29 0.702729E 29 -0.104211E 34 0.103558E 34 0.148049E 34 0.145282E 34N)2.00 -0.136853E 29 0.135872E 29 -0.16o856E 29 0.1o3294E 29 -0.281907E 33 0.280140E 33 -0.344022E 33 0.337592E 33F 3.00 -0.417425E 28 0.414433E 28 -0.479056E 28 0.468828E 28 -0.859864E 32 0.854474E 32 -0.987712E 32 0.969251E 324.00 -0.134093E 2d 0.133132E 28 -0.148925E 28 0.145745E 28 -0.276222E 32 0.274490E 32 -0.307051E 32 0.301312E 325.00 -0.443516E 27 0.440338E 27 -0.482511E 27 0.472209E 27 -0.913612E 31 0.907885E 31 r0.994837E 31 0.976243E 316.00 -0.149477E 27 0.148405E 27 -0.160326E 27 0.156903E 27 -0.307911E 31 0.305980E 31 -0.330559E 31 0.324380E 317.00 -0.510429E 2b 0.5C6770E 26 -0.541828E 26 0.530259E 26 -0.105144E 31 0.104485E 31 -0.111713E 31 0.109625E 318.00 -0.17>997 Zo 0.174736L 26 -0.185351E 2o 0.181394E 26 -0.362541E 30 0.360268E 30 -0.382156E 30 0.375013E 309.03 -0.o1133E 2 0.607001E 25 -0.b39875E 25 0.b26214E 25 -0.125940E 30 0.125151E 30 -0.131929E 30 0.129463E 30

1J.u -J.21jo-3E 25 0.21211i1 25 -0.222475E 25 0.217725E 25 -0.44C088E 29 0.437329E 29 -0.458696E 29 0.450123E 2920.uu -u.odou t '0 G.6814914E 20 -0.701833E 20 0.686b49E 20 -0.142106E 25 0.141215E 25 -0.144703E 25 0.141999E 253G.J, -0.2oc.OL 10 0.2:,439E 10 -U.258605E 16 0.253083t 16 -0.527826E 20 0.524517E 20 -0.533189E 20 0.523223E 2040.,, -o.lu*4dtE 12 0.1 125 12 -U.1C1369E 12 0.992043E 11 -0.207738E 16 0.206436E 16 -0.209001E 16 0.205094E 165u.3j -j.0Ulo2 tl 0.0'tOb824 07 -0.41C872E 07 0.4G2100E 07 -0.844077E 11 0.838785E 11 -0.847132E 11 0.831299E 11

7 .-j .J 0.142 857-01 U.u 0.142857E-01 -0. 147141E 03 0.146218E 03 -0.147259E 03 0.144507E 038,.uj J.illi4iL J- C.,l*618 03 0.147259F 03 0.15(426E 03 0.0 0.125000E-01 0.0 0.125000E-0190.U3 3., iot u7 0.30Ubo5E 07 0.305971E 07 0.312550E 07 0.129772E 03 0.130580E 03 0.129853E 03 0.132295E 0310J. u 0.0ojd08E 11 0.642051E ii 0.639630E 11 0.65338tE 11 0.271135E 07 0.272824E 07 0.271457E 07 0.276562E 07



XI= 90.00 X1=10000

X K=0,L=O K--=O,L= K=1,L=1 K=1,L=2 K=O,L=O K=0,L=1 K=IL=1 K=1,L=2

0.01 -0.242636E 39 0.241284E 39 -0.510927E 40 0.502436E 40 -0.506944E 43 0.504403E 43 -0.106809E 45 0.105211E 45
0.05 -0.160048E 39 0.159156E 39 -0.1C1750E 40 0.100059E 40 -0.334391E 43 0.332715E 43 -0.212709E 44 0.209526E 44

0.10 -0.124733E 39 0.124u38E 39 -0.5C3591E 39 0.495222E 39 -0.260606E 43 0.259300E 43 -0.105275E 44 0.103700E 440.2J -0.9u0755E 36 0.895738E 38 -0.244081E 39 0.240025E 39 -0.188196E 43 0.187253E 43 -0.510250E 43 0.502616E 430.30 -0.705339E 3d 0.701410E 38 -0.156180E 39 0.153584E 39 -0.147368E 43 0.146629E 43 -0.326493E 43 0.321608E 430.40 -0.572782E 38 0.569591L 38 -0.111634E 39 0.109778E 39 -0.119o72E 43 0.119073E 43 -0.233369E 43 0.229878E 43
0.50 -0.475U81E 38 0.472434E 38 -0.846541E 38 0.832472E 38 -0.992595E 42 0.987621E 42 -0.176969E 43 0.174321E 430.60 -0.399587E 38 0.397361E 38 -0.665827E 38 0.o54762E 38 -0.348o4E 42 0.830680E 42 -0.139191E 43 0.137108E 430.70 -0.33945oE 3o 0.337565b 38 -0.536758E 38 0.527837E 38 -0.709233E 42 0.705678E 42 -0.112209E 43 0.110530E 43
0.80 -0.29u545L 38 0.288927E 38 -0.440423E 38 0.433103E 38 -0.607042E 42 0.604000E 42 -0.920701E 42 0.906926E 420.90 -0.25u142L 3d 0.248749E 38 -0.366192E 38 0.36U108E 38 -0.522627E 42 0.520008E 42 -0.765522E 42 0.754068E 42

1.UU -0.210474E 36 0.215169E 38 -0.307611E 38 0.302499E 38 -0.452075E 42 0.449810E 42 -0.643059E 42 0.633438E 422.00 -0.585327L 37 0.582066E 37 -0.714799E 37 0.702919E 37 -0.122293E 42 0.121681E 42 -0.149428E 42 0.147193E 423.00 -0.178534E i7 0.177540E 37 -0.205224E 37 0.201813E 37 -0.373015E 41 0.371146E 41 -0.429019E 41 0.422600E 414.00 -0.51-522 36 0.570327E 36 -0.637982E 36 0.627379E 36 -0.119827E 41 0.119227E 41 -0.133370E 41 0.131374E 41.n 5.00 -0.189o94E 36 0.188638E 3o -0.206704E 36 0.203269E 36 -0.396332E 40 0.394346E 40 -0.432114E 40 0.425649E 406.00 -0.639318E 35 0.635757E 35 -0.686824E 35 0.675410E 35 -0.133574E 40 0.132904E 40 -0.143580E 40 0.141432E 401.00 -0.218312E 35 0.217096E 35 -0.232115E 35 0.228257E 35 -3.456124E 39 0.453839E 39 -0.485234E 39 0.477974E 398.00 -0.752747 34 0.748554E 34 -0.794031E 34 0.780834E 34 -0.157273E 39 0.156485E 39 -0.165992E 39 0.163508E 399
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ABSTRACT

An analytical method has been developed to estimate the amount

of heat extracted from an artery running close to the skin surface

which is cooled in a symmetrical fashion by a cooling strip.

The results indicate that the optimum width of a cooling strip

is approximately three times the depth to the centerline of the

artery. The heat extracted from an artery with such a strip is

about 0.9 w/m-OC which is too small to affect significantly the

temperature of the blood flow through a main blood vessel, such as

the carotid artery.

The method is applicable to veins as well.
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NOMENCLATURE

A through H locations in Fig. 1

a width of tissue, (L)*

2an cooled width of skin, (L)

b depth to centerline of artery, (L)

Cb  specific heat of blood, (E/M - T)

c specific heat of tissue, (E/M - T)

d depth to body core, (L)

F,F2 ,F3  constant heat fluxes, (E/L2t)

k thermal conductivity of tissue, (E/t - L - T)

L length of cooled section, (L)

q local volumetric heat generation rate, (E/t - L3 )

qa heat loss from 1/2 artery per unit length, (E/t - L)

q1 heat extracted by cooling strip per unit length,
(E/t - L)

Q q/k, (T/L2)

R radius of artery, (L)

t time, (t)

T temperature, (T)

T temperature of cooled skin, (T)

T2  temperature of uncooled skin, (T)

T arterial temperature, (T)

T mean temperature, (T)

w (WbCb/k), (L- )

wb blood perfusion rate, (M/t - L3 )

x coordinate perpendicular to centerline of artery,
parallel to skin surface, (L)

*Units in parentheses are: E, energy; M, mass; L, length; T, temperature;
t, time.
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y coordinate perpendicular to centerline of artery,
perpendicular to skin surface, (L)

8 length ratio AA'/AF, approaching zero in the limit

y length ratio AG/AF

C(w 2 + X2) , (L-)
n n

length ratio CD/CE

6 (T - T )/1 o

8' T - T , (T)

6 = -e T - T1, (T)
o 1 a 1

8 = -8 T - T , (T)
1 o 1 a

02 T2 - Ta (T)

x n7T/a, (L - 1 )
n

p density of tissue, (M/L 
3 )

SUBSCRIPTS

a arterial

0 reference condition
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INTRODUCTION

Experiments on localized cooling of the neck skin above the

carotid artery indicated a significant effect of this cooling on

the thermal comfort sensation of the individual [ll*. An analyti-

cal study of the thermal interaction between an artery near the skin

and a cooling patch on the skin surface was undertaken to esti-

mate the amount of heat that can be extracted from a blood vessel

transcutaneously. The results should help to determine if the

effect on the thermal comfort is due to indirect hypothalamic

cooling by a reduction of the arterial blood supply temperature

or due to some other influence such as that of a local cold re-

ceptor.

It is to be understood that the method is applicable to

veins as well even though the term "artery" is used throughout

this work.

*Numbers in brackets refer to entries in REFERENCES.
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ANALYSIS

The analysis depends on the solution of the "bio-heat" equation

[2,3]:

PT kV2T + cb (T a  T) + (1)p a= w b a

The following assumptions were made in developing this equation

[3]:

1. The thermophysical properties of the tissue are constant

and the tissue is homogeneous and isotropic.

2. Blood enters the tissue at a constant arterial temperature,

T , and leaves at the local temperature of the tissue, T.

(This last assumption is based on the almost perfect heat

exchange occurring in the capillary bed.)

3. Blood perfusion, wb, and metabolic heat production rates,

q, are uniform and constant everywhere in the tissue.

The boundary conditions depend on the assumed geometry as well

as on considerations which make the solutions easier to obtain while

retaining a reasonable similarity with the physical situation.

Figure 1 depicts the basic tissue geometry considered. It is

assumed that the cooling patch runs parallel and symmetrically to the

artery. If the temperature gradients along the artery are neglected

in comparison to those perpendicular to the artery, the problem be-

comes two dimensional as shown.

The line of symmetry, through the centerline of the artery A-C,

must be adiabatic. Along the skin surface, C-D and D-E, temperatures

or heat fluxes can be specified. Since the temperature measurements

are much more reliable than flux measurements at the skin surface,
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Figure 1 Geometrical configuration of the cooling strip and blood vessel.



temperatures are selected as boundary conditions. If the boundary,

E-F, is far enough away from the artery as described below, it may

be considered adiabatic. This assumption is equivalent to saying

that at long distances from the artery and from the cooling patch,

the heat flow is one dimensional, corresponding to a temperature

difference between the uncooled skin and the body core located at

some fixed distance under the skin. By numerical computations it

was found that these two conditions are essentially identical if

n = CD/CE < 1/3. For all calculations n = 0.25 was used thereafter.

At the surface of the artery, B-H, the temperature should be Ta

Since it is difficult to solve a basically rectangular problem with

conditions specified along a curved boundary, an approximation

was developed which depended on the specification of the heat flux

along the inner boundary, A-F. The approximation is based on the

well established fact that the two-dimensional isotherms (constant

temperature lines) around a point heat source are circular, (cf. [4] )

Consequently, specifying a heat flux of some appropriate intensity

at the centerline of the artery, A, will produce circular temperature

lines, one of which can be made to coincide as nearly as possible

with the surface of the artery. Near the other end of the inner

boundary, F, a uniform heat flux can be specified corresponding to

a temperature difference between the uncooled skin and the body core.

Between A and F, the flux can be somewhat arbitrary, but it must be

zero near A to keep the isotherms circular. As will be seen later,

the flux distribution is expressed in terms of Fourier series which

become more involved as the flux function becomes more complicated.
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It has been found, however, that the most important single result,

i.e., the total heat lost from the artery, is rather insensitive

to the exact shape of the flux function. Therefore, in addition

to the heat source at A, zero flux is assumed along A-G and an ap-

propriate, uniform flux is assumed along G-F. G is arbitrarily

located under the outer edge of the cooling strip, D. Finally,

deep body temperature is assumed to be equal to Ta

If the origin of the coordinate system is located at the

center of the artery, the problem in mathematical terms becomes

as follows:

V2' - w20' = -Q (2)

where

0' = T - Ta (3)

Q qk (4)

2 Wb Cb
w (5)

The boundary conditions are

x = 0 at x = 0 
(6a)ax

x = 0 at x = a (6b)

ae,'
y - at 0 < x < Sa, y =0 (6c)

where

AA'
AF

a0'
y = 0 at Ba < x < ya, y = 0 (6d)

' F2
S at ya < x . a, y = 0 (6e)Dy k



6,

AG
where y - AF

8' = eo at 0 < x < na, y = b (6f)

8' = 02 at na < x < a, y- b (6g)

CD
where n = , and

o = T1 - T (7)1 1 a

o = T - T (8)2 2 a

To non-dimensionalize the problem and to utilize the fact that

T is the lowest temperature in the system, define

o = -e = T - T > 0 (9)o 1 a 1

T - T
8 1- (10)S61o 1

The solution can be obtained by appropriate transformations

of the variables and by Fourier series expansion of the temperature

and flux functions [3]. The result is:

--- + i1-' + ()2 QS2 cosh (wy) Q
2 0 ] cosh (wb) 2

o o

F 1 + F (1 - y) sinh [w(b - y)]

kwe cosh (wb)

FF
+ 2 sinh [G (b - y)] k

1 -2 sin (nTM) ccsh
sin (n-) 1

nT) sinh [En ( b - y)] -nnu n n

cos (Xnx)
cosh (t b)

n
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where

n£
n a(12)

2 2 22 w + 2 
(13)n n

F2 can be evaluated from the one-dimensional temperature dis-

tribution [3,5] calculated for a depth, d, from the skin surface

to the body core and a temperature difference of (T - T ).

F2 F3 cosh [w(d - b)] Q sinh (wb)
kw0 kw6 cosh (wd) 2 cosh (wd)o o w 0

O

where

F3 1 w 2  cosh (wd)
SQ(15)

kwe tanh (wd)
o

F must be selected to provide 0 = 1 at the circumference of the

artery at a distance R from the center. Mathematically, this condition

can be satisfied only at one point, which was arbitrarily chosen to be

8 = 1 at x = R, y = 0 (16)

Thus, from Eq. (11)

kwO 2 cosh (wb) w2e
O O

F2(1 - y) tanh (wb)

kw8
0

F_ 1 2 sin (nirn)+2Z2 sin (nsin) ________

+F2 sin (ny) tanh ( nb ) +

5 n/tanh ( g b)

cos (AnR tanh (wb) + 2w n cos (A R) (17a)
4n = 5
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An alternate selection was

8 = 1 at x 0, y = R

Then, from Eq. (11)

S F + 22 cosh (wR) Q
w cosh (wb)

o0 =1- 1 c w

F (1 - ) sinh [w(b - R)]
kwe cosh (wb)

+ 2 k sin (ny) sinh [n(b - R)]

n= 1 n

S- -Isin (nr) cosh (1 R) 1
+ nTw cosh (nb)

sinh [w(b - R)] + 2w n(b (17b)
cosh (wb) 2w n cosh (nb) (17b)

n = 1

The two alternatives, Eqs. (17a) and (17b), gave similar results

as long as the 6 = 1 isotherm was nearly circular, i.e., as long as a

constant arterial surface temperature was closely approximated.

Equation (17) generally gave slightly higher heat extraction rates

from the artery due to the slightly higher temperature gradients occur-

ring between B and C (see Fig. 1) with this equation.

For evaluating all the series on a digital computer, at least

30 terms were used to obtain good convergence.

The heat lost per unit length from the quarter artery shown in

Fig. 1 is equal to

qa qrR2  WbCb(T - T ) rR 2

qF Ba + + (18)
2 4 4
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where a is the heat loss per unit time per unit length of the skin-

side half of the artery,

The first term on the right-hand side is the heat produced by

the source at the centerline. The second term is the heat generated

within the quarter circle. The third term represents an approxi-

mation of the heat supplied by the assumed "blood flow" within the

quarter circle. The mean tissue temperature, Tm, was calculated

as the average of 12 temperatures representing 12 equal areas within

the quarter circle. This last term was usually negative. The heat

removed from the deeper half of the artery must be less than ; it

was estimated to be generally less than 15 percent of qa. Because

of the uncertainties in establishing the boundary conditions for the

other half of the artery, only qa was considered for all numerical

work and comparisons.

The heat extracted by the cooling strip per unit length can be

found by integrating the heat flux at y = b from x = 0 to x = na

and doubling the result. In dimensionless form this expression be-

comes

qb 82 02=b 2wb 8+ 1- + tanh (wb)k6 a 6

F1+F 2 ( 2 sin (nTry)
kwO cosh (wb) +kw0 kwO n7r

1- sin (n) n sinh b)
+ sin (nim)

wnTr n71 cosh (5b)
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DISCUSSION

Although the heat lost from the artery is the most signifi-

cant result, it is worth while to investigate other aspects of the

problem as well. Examination of the analytical results indicates

that the following dimensionless parameters occur:

Q 2
-8, , Y, , wb, wd

W2  8
O

In addition, other geometrical parameters such as b /2fla, b/bo

and R /R can be considered.
o

The influence of n was discussed earlier. It was always taken

as 0.25. Variations of y and wd were found to affect the heat lost

from the artery only minimally. Therefore, y was made equal to n

and d was set equal to b.

For the sake of comparisons, the following additional quanti-

ties were selected for "normal" or "reference" conditions [3,6]:

Width of cooling strip . . 2na = 0.0264 m

Depth to centerline of artery. * b0 = 0.01m = 1 cm

Radius of artery * . . * . * * . R = 0.0025 m = 0.25 cm

Temperature ratio * * * * * * 2/1 = 0.3 and 0.15

Blood heat capacity rate ... wbcb = 1746 w/m 03C

Heat generation rate ........* * * q = 660 w/m3

Thermal conductivity of tissue * . k = 0.54 w/mOC

Figure 2 shows the dimensionless temperature distribution in the

vicinity of the artery under the assumed "normal" conditions. The

e = 1.0 line is virtually circular, as is required for good modeling

of the arterial wall temperature. The effect of the temperature
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T - Tcooled skin
Normal Conditions Torter -Tcooled skin

8 = 1.0 0.8 0.9
Artery - - - - -1.0 Asymptote

- 0.9 Asymptote

A .4- 0.8 Asymptote
SLocation of 0.8 Isotherm

0 / if Skin Surface Temperature is 8 = 0.85

Cooled Skin Surface, 8=0 Skin Surface , 8=0.7

Figure 2 Dimensionless temperature distribution in the vicinity
of a cooled artery under the assumed "normal" conditions.
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ratio, 82 81, is significant only in the relatively unimportant area,

DEFG (see Fig. 1), as is demonstrated by the 8 = 0.8 isotherm. The

heat loss from the artery changed little for the two temperature ratios

used because all this heat was extracted through the cooled portion of

the skin as calculated from Eqs. (18) and (19).

Figure 3 should be compared with Fig. 2 to realize the effects of

blood perfusion and internal heae generation rates on the temperature

distributions. Increasing both of these variables shifts the isotherms

toward the skin surface. The effects of the high heat generation rate

are relatively small, whereas the increased blood perfusion rate

changes the temperature field very significantly, as shown most dra-

matically by the 6 = 0.8 isotherm.

Figure 4 shows the heat extraction rate from an artery per unit

length and unit temperature difference, 80 = 1, as a function of five

dimensionless parameters, all of which have significant influence.

One of the curves, showing the effect of bo/2na, behaves anomalously be-

low b /2na = 0.36. Physical considerations suggest an asymptotic level-

ing off of the curve as this parameter approaches zero, i.e., as the

width of the cooling strip becomes very wide compared to the depth of

the artery. Instead, the calculations show a decrease of heat ex-

traction rates. Investigation of the temperature profiles, however,

revealed that in this regime (b /2na < 0.36) the 6 = 1 isotherm ceased

to be circular (it flattened out) the deviation becoming more pro-

nounced as the parameter decreased. In some instances, indications

of a possible numerical instability in this regime also occurred. Thus,

the model presented here should be considered inappropriate in this re-

gion. Instead, it should be assumed that the curve asymptotically



- Extremely High Blood Flow,
No Heat Generation T-Tcooled skin

--- Extremely High Heat Generation, Tortery -Tcooled skin
Virtually No Blood Flow

8 = 1.O 1.0 Asymptote

iArtery / 0.9 .0.8 \. 0.9

e1 0.8

"-"0.6 . ., 0.9 Asymptotes

I / 0.8 Asymptotes

0.2

Cooled Skin Surface, 8= 0 Skin Surface, 8 = 0.7

Figure 3 Dimensionless temperature distributions in the vicinity
of a cooled artery with extremely high blood perfusion
rate (wb = 2) and with extremely high internal heat
generation rate (Q/w28 = 250) within the tissue.0
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1.0

0.9

o 0.8 - Q/W2&0
E \ (wb=O)

0.7 -

E 0.6-

\ wb

2 0.5 " R0 /R

L \ bo/2ar

0 0.4-

b/bo

0.20.2 b/bO 0  0

0 50 100 150 200 250 Q/w 20o
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0 0.5 1.0 bo/2a?
I I I I I I I I I I I
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Figure 4 Heat extraction rates per unit length of artery, per
unit temperature difference between artery and cooled
skin. 6 2/81 = 0.15. Circles indicate "normal" conditions.
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reaches a maximum as bo /2a approaches :zero. This maximum shbuld-be

just slightly higher than the maximum of the curve shown. Thus, the

"normal" conditions are close to optimal as far as the width of the

cooling strip is concerned. The optimum, i.e., minimum width for

close to maximum heat extraction rate, is around a cooling width to

arterial depth ratio of 3.

The remaining curves indicate that the heat extraction rate

increases with decreasing internal heat generation rate (Q/w2 o),

with decreasing blood flow rate (wb), with decreasing arterial depth

(b/b ), and with increasing arterial radius (i.e., decreasing R /R).
o o

These are, however, physiological parameters which usually cannot be

controlled arbitrarily. It is to be noted, however, that if the

cooling strip temperature could be lowered enough to cause local vaso-

constriction, then the heat extraction rate from the artery would in-

crease not only because of the increased temperature difference, but

also as a result of decreased blood perfusion of the tissue.

The results indicate that under the "normal" conditions a square

cooling patch with an area of 7 cm2 (sides, 2al = 2.64 cm) will ex-

tract about 0.025 watts from the artery for each 10C difference be-

tween the artery and the cooled skin surface. On the other hand, the

blood requires about 0.06 watts to change its temperature by 10C for

each cc/min of flow. Thus, if 0 = 200C and the arterial blood flow

is 200 cc/min, the arterial blood temperature is expected to decrease

only about 0.04 0C. Even if allowance is made for additional heat

loss from the deep side of the artery, this is indeed a very small

temperature change. The temperature dop is too small to have any

effect on the hypothalamic temperature regulator; consequently, the
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pronounced effects on thermal comfort found by Williams and Chambers

[11 were probably due to some local thermal receptor action rather

than to reduced arterial temperatures reaching the hypothalamus.

To check the magnitude of these results, the maximum possible

heat extraction rate from the artery can be calculated by assuming

an equivalent one-dimensional conduction problem from an area equal

to that of the skin-side surface of the artery, 27RL, across a dis-

tance equal to the depth of the point on the artery closest to the

skin, b - R.

-, 27rRk
(20)0 b-R

1

Substituting the values for the "normal" condition yields

a value of 1.13 w/moC, which corresponds to about 0.03 w/OC for a

patch with an area of 7 cm2 . Thus, the previously estimated value

of 0.025 w/OC is quite reasonable.
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CONCLUSIONS AND RECOMMENDATIONS

An analytical method has been developed t6 estimate the amount

of heat extracted from an artery running near and parallel to the

skin surface, such as the carotid artery in the neck, when the skin

surface is cooled in a symmetrical fashion above the artery.

The results indicate that the optimum width of the cooling strip

is approximately three times the depth to the centerline of the ar-

tery. However, even at the optimum size the amount of heat removed

from a main artery with reasonable skin temperatures is too small to

affect the temperature of the blood significantly.

A three-dimensional, finite difference method could be attempted

to obtain a more accurate model of the actual, circular cooling patch

used in the work reported on in [1]. However, the results presented

in this report indicate that the additional accuracy is not going to

change the values sufficiently to alter the conclusions drawn.
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